Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

[Merged by Bors] - feat(data/list/perm): binding all the sublists of a given length gives all the sublists #15834

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions src/data/list/perm.lean
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ import data.list.dedup
import data.list.lattice
import data.list.permutation
import data.list.zip
import data.list.range
import logic.relation

/-!
Expand Down Expand Up @@ -924,6 +925,10 @@ begin
exact perm_append_comm.append_right _
end

theorem map_append_bind_perm (l : list α) (f : α → β) (g : α → list β) :
l.map f ++ l.bind g ~ l.bind (λ x, f x :: g x) :=
by simpa [←map_eq_bind] using bind_append_perm l (λ x, [f x]) g

theorem perm.product_right {l₁ l₂ : list α} (t₁ : list β) (p : l₁ ~ l₂) :
product l₁ t₁ ~ product l₂ t₁ :=
p.bind_right _
Expand Down Expand Up @@ -983,6 +988,24 @@ begin
{ exact (IH _ _ h).cons _ } }
end

lemma range_bind_sublists_len {α : Type*} (l : list α) :
eric-wieser marked this conversation as resolved.
Show resolved Hide resolved
(list.range (l.length + 1)).bind (λ n, sublists_len n l) ~ sublists' l :=
begin
induction l with h tl,
{ simp [range_succ] },
{ simp_rw [range_succ_eq_map, length, cons_bind, map_bind, sublists_len_succ_cons,
sublists'_cons, list.sublists_len_zero, list.singleton_append],
refine ((bind_append_perm (range (tl.length + 1)) _ _).symm.cons _).trans _,
simp_rw [←list.bind_map, ←cons_append],
rw [←list.singleton_append, ←list.sublists_len_zero tl],
refine perm.append _ (l_ih.map _),
rw [list.range_succ, append_bind, bind_singleton,
sublists_len_of_length_lt (nat.lt_succ_self _), append_nil,
←list.map_bind (λ n, sublists_len n tl) nat.succ, ←cons_bind 0 _ (λ n, sublists_len n tl),
←range_succ_eq_map],
exact l_ih }
end

theorem perm_lookmap (f : α → option α) {l₁ l₂ : list α}
(H : pairwise (λ a b, ∀ (c ∈ f a) (d ∈ f b), a = b ∧ c = d) l₁)
(p : l₁ ~ l₂) : lookmap f l₁ ~ lookmap f l₂ :=
Expand Down
9 changes: 9 additions & 0 deletions src/data/list/sublists.lean
Original file line number Diff line number Diff line change
Expand Up @@ -282,4 +282,13 @@ end
length_of_sublists_len h⟩,
λ ⟨h₁, h₂⟩, h₂ ▸ mem_sublists_len_self h₁⟩

lemma sublists_len_of_length_lt {n} {l : list α} (h : l.length < n) : sublists_len n l = [] :=
eq_nil_iff_forall_not_mem.mpr $ λ x, mem_sublists_len.not.mpr $ λ ⟨hs, hl⟩,
(h.trans_eq hl.symm).not_le (length_le_of_sublist hs)

@[simp] lemma sublists_len_length : ∀ (l : list α), sublists_len l.length l = [l]
| [] := rfl
| (a::l) := by rw [length, sublists_len_succ_cons, sublists_len_length, map_singleton,
sublists_len_of_length_lt (lt_succ_self _), nil_append]

end list
4 changes: 2 additions & 2 deletions src/tactic/wlog.lean
Original file line number Diff line number Diff line change
Expand Up @@ -162,13 +162,13 @@ perms ← parse_permutations perms,
| some pat := do
pat ← to_expr pat,
let vars' := vars.filter $ λv, v.occurs pat,
case_pat ← mk_pattern [] vars' pat [] vars',
case_pat ← tactic.mk_pattern [] vars' pat [] vars',
perms' ← match_perms case_pat cases,
return (pat, perms')
| none := do
(p :: ps) ← dest_or cases,
let vars' := vars.filter $ λv, v.occurs p,
case_pat ← mk_pattern [] vars' p [] vars',
case_pat ← tactic.mk_pattern [] vars' p [] vars',
perms' ← (p :: ps).mmap (λp, do m ← match_pattern case_pat p, return m.2),
return (p, perms')
end,
Expand Down