Skip to content
This repository has been archived by the owner on Jul 24, 2024. It is now read-only.

[Merged by Bors] - feat(ring_theory/dedekind_domain/ideal): construct map between the sets of prime factors of ideal I and J induced by an isomorphism between R/I and S/J #16455

Closed
wants to merge 8 commits into from
135 changes: 113 additions & 22 deletions src/ring_theory/dedekind_domain/ideal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ import order.hom.basic
import ring_theory.dedekind_domain.basic
import ring_theory.fractional_ideal
import ring_theory.principal_ideal_domain
import ring_theory.chain_of_divisors

/-!
# Dedekind domains and ideals
Expand Down Expand Up @@ -925,13 +926,12 @@ begin
map_comap_of_surjective J^.quotient.mk quotient.mk_surjective, map_map],
end

variables [is_domain R] [is_dedekind_domain R]
variables [is_domain R] [is_dedekind_domain R] (f : R ⧸ I ≃+* A ⧸ J)

/-- The bijection between ideals of `R` dividing `I` and the ideals of `A` dividing `J` induced by
an isomorphism `f : R/I ≅ A/J`. -/
@[simps]
def ideal_factors_equiv_of_quot_equiv (f : R ⧸ I ≃+* A ⧸ J) :
{p : ideal R | p ∣ I} ≃o {p : ideal A | p ∣ J} :=
def ideal_factors_equiv_of_quot_equiv : {p : ideal R | p ∣ I} ≃o {p : ideal A | p ∣ J} :=
order_iso.of_hom_inv
(ideal_factors_fun_of_quot_hom (show function.surjective
(f : R ⧸I →+* A ⧸ J), from f.surjective))
Expand All @@ -946,6 +946,71 @@ order_iso.of_hom_inv
← ring_equiv.to_ring_hom_eq_coe, ← ring_equiv.to_ring_hom_trans, ring_equiv.self_trans_symm,
ring_equiv.to_ring_hom_refl])

lemma ideal_factors_equiv_of_quot_equiv_symm :
riccardobrasca marked this conversation as resolved.
Show resolved Hide resolved
(ideal_factors_equiv_of_quot_equiv f).symm = ideal_factors_equiv_of_quot_equiv f.symm := rfl

lemma ideal_factors_equiv_of_quot_equiv_is_dvd_iso {L M : ideal R} (hL : L ∣ I) (hM : M ∣ I) :
(ideal_factors_equiv_of_quot_equiv f ⟨L, hL⟩ : ideal A) ∣
ideal_factors_equiv_of_quot_equiv f ⟨M, hM⟩ ↔ L ∣ M :=
begin
suffices : ideal_factors_equiv_of_quot_equiv f ⟨M, hM⟩ ≤
ideal_factors_equiv_of_quot_equiv f ⟨L, hL⟩ ↔ (⟨M, hM⟩ : {p : ideal R | p ∣ I}) ≤ ⟨L, hL⟩,
{ rw [dvd_iff_le, dvd_iff_le, subtype.coe_le_coe, this, subtype.mk_le_mk] },
exact (ideal_factors_equiv_of_quot_equiv f).le_iff_le,
end

open unique_factorization_monoid

variables [decidable_eq (ideal R)] [decidable_eq (ideal A)]

lemma ideal_factors_equiv_of_quot_equiv_mem_normalized_factors_of_mem_normalized_factors
(hJ : J ≠ ⊥) {L : ideal R} (hL : L ∈ normalized_factors I) :
↑(ideal_factors_equiv_of_quot_equiv f
⟨L, dvd_of_mem_normalized_factors hL⟩) ∈ normalized_factors J :=
begin
by_cases hI : I = ⊥,
{ exfalso,
rw [hI, bot_eq_zero, normalized_factors_zero, ← multiset.empty_eq_zero] at hL,
exact hL, },
{ apply mem_normalized_factors_factor_dvd_iso_of_mem_normalized_factors hI hJ hL _,
rintros ⟨l, hl⟩ ⟨l', hl'⟩,
rw [subtype.coe_mk, subtype.coe_mk],
apply ideal_factors_equiv_of_quot_equiv_is_dvd_iso f }
end

/-- The bijection between the sets of normalized factors of I and J induced by a ring
isomorphism `f : R/I ≅ A/J`. -/
@[simps apply]
def normalized_factors_equiv_of_quot_equiv (hI : I ≠ ⊥) (hJ : J ≠ ⊥) :
riccardobrasca marked this conversation as resolved.
Show resolved Hide resolved
{L : ideal R | L ∈ normalized_factors I } ≃ {M : ideal A | M ∈ normalized_factors J } :=
{ to_fun := λ j, ⟨ideal_factors_equiv_of_quot_equiv f ⟨↑j, dvd_of_mem_normalized_factors j.prop⟩,
ideal_factors_equiv_of_quot_equiv_mem_normalized_factors_of_mem_normalized_factors f hJ j.prop⟩,
inv_fun := λ j, ⟨(ideal_factors_equiv_of_quot_equiv f).symm
⟨↑j, dvd_of_mem_normalized_factors j.prop⟩, by { rw ideal_factors_equiv_of_quot_equiv_symm,
exact ideal_factors_equiv_of_quot_equiv_mem_normalized_factors_of_mem_normalized_factors
f.symm hI j.prop} ⟩,
left_inv := λ ⟨j, hj⟩, by simp,
right_inv := λ ⟨j, hj⟩, by simp }

@[simp]
lemma normalized_factors_equiv_of_quot_equiv_symm (hI : I ≠ ⊥) (hJ : J ≠ ⊥) :
(normalized_factors_equiv_of_quot_equiv f hI hJ).symm =
normalized_factors_equiv_of_quot_equiv f.symm hJ hI :=
rfl

variable [decidable_rel ((∣) : ideal R → ideal R → Prop)]
variable [decidable_rel ((∣) : ideal A → ideal A → Prop)]

/-- The map `normalized_factors_equiv_of_quot_equiv` preserves multiplicities. -/
lemma normalized_factors_equiv_of_quot_equiv_multiplicity_eq_multiplicity (hI : I ≠ ⊥) (hJ : J ≠ ⊥)
(L : ideal R) (hL : L ∈ normalized_factors I) :
multiplicity ↑(normalized_factors_equiv_of_quot_equiv f hI hJ ⟨L, hL⟩) J = multiplicity L I :=
begin
rw [normalized_factors_equiv_of_quot_equiv, equiv.coe_fn_mk, subtype.coe_mk],
exact multiplicity_factor_dvd_iso_eq_multiplicity_of_mem_normalized_factor hI hJ hL
(λ ⟨l, hl⟩ ⟨l', hl'⟩, ideal_factors_equiv_of_quot_equiv_is_dvd_iso f hl hl'),
end

end

section chinese_remainder
Expand Down Expand Up @@ -1148,13 +1213,33 @@ begin
exact (prime_of_normalized_factor a ha).ne_zero (span_singleton_eq_bot.mp h) },
end

lemma multiplicity_eq_multiplicity_span [decidable_rel ((∣) : R → R → Prop)]
[decidable_rel ((∣) : ideal R → ideal R → Prop)] {a b : R} :
multiplicity (ideal.span {a}) (ideal.span ({b} : set R)) = multiplicity a b :=
begin
by_cases h : finite a b,
{ rw ← part_enat.coe_get (finite_iff_dom.mp h),
refine (multiplicity.unique
(show (ideal.span {a})^(((multiplicity a b).get h)) ∣ (ideal.span {b}), from _) _).symm ;
rw [ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd],
exact pow_multiplicity_dvd h ,
{ exact multiplicity.is_greatest ((part_enat.lt_coe_iff _ _).mpr (exists.intro
(finite_iff_dom.mp h) (nat.lt_succ_self _))) } },
{ suffices : ¬ (finite (ideal.span ({a} : set R)) (ideal.span ({b} : set R))),
{ rw [finite_iff_dom, part_enat.not_dom_iff_eq_top] at h this,
rw [h, this] },
refine not_finite_iff_forall.mpr (λ n, by {rw [ideal.span_singleton_pow,
span_singleton_dvd_span_singleton_iff_dvd], exact not_finite_iff_forall.mp h n }) }
end

variables [decidable_eq R] [decidable_eq (ideal R)] [normalization_monoid R]

/-- The bijection between the (normalized) prime factors of `r` and the (normalized) prime factors
of `span {r}` -/
@[simps]
noncomputable def normalized_factors_equiv_span_normalized_factors [normalization_monoid R]
[decidable_eq R] [decidable_eq (ideal R)] {r : R} (hr : r ≠ 0) :
noncomputable def normalized_factors_equiv_span_normalized_factors {r : R} (hr : r ≠ 0) :
{d : R | d ∈ normalized_factors r} ≃
{I : ideal R | I ∈ normalized_factors (ideal.span ({r} : set R))} :=
{I : ideal R | I ∈ normalized_factors (ideal.span ({r} : set R))} :=
equiv.of_bijective
(λ d, ⟨ideal.span {↑d}, singleton_span_mem_normalized_factors_of_mem_normalized_factors d.prop⟩)
begin
Expand All @@ -1176,23 +1261,29 @@ begin
dvd_iff_le.mp (dvd_of_mem_normalized_factors hi))) (mem_span_singleton.mpr (dvd_refl r))) } }
end

lemma multiplicity_eq_multiplicity_span [decidable_rel ((∣) : R → R → Prop)]
[decidable_rel ((∣) : ideal R → ideal R → Prop)] {a b : R} :
multiplicity (ideal.span {a}) (ideal.span ({b} : set R)) = multiplicity a b :=
variables [decidable_rel ((∣) : R → R → Prop)] [decidable_rel ((∣) : ideal R → ideal R → Prop)]

/-- The bijection `normalized_factors_equiv_span_normalized_factors` between the set of prime
factors of `r` and the set of prime factors of the ideal `⟨r⟩` preserves multiplicities. -/
lemma multiplicity_normalized_factors_equiv_span_normalized_factors_eq_multiplicity {r d: R}
(hr : r ≠ 0) (hd : d ∈ normalized_factors r) :
multiplicity d r =
multiplicity (normalized_factors_equiv_span_normalized_factors hr ⟨d, hd⟩ : ideal R)
(ideal.span {r}) :=
by simp only [normalized_factors_equiv_span_normalized_factors, multiplicity_eq_multiplicity_span,
subtype.coe_mk, equiv.of_bijective_apply]

/-- The bijection `normalized_factors_equiv_span_normalized_factors.symm` between the set of prime
factors of the ideal `⟨r⟩` and the set of prime factors of `r` preserves multiplicities. -/
lemma multiplicity_normalized_factors_equiv_span_normalized_factors_symm_eq_multiplicity
{r : R} (hr : r ≠ 0) (I : {I : ideal R | I ∈ normalized_factors (ideal.span ({r} : set R))}) :
multiplicity ((normalized_factors_equiv_span_normalized_factors hr).symm I : R) r =
multiplicity (I : ideal R) (ideal.span {r}) :=
begin
by_cases h : finite a b,
{ rw ← part_enat.coe_get (finite_iff_dom.mp h),
refine (multiplicity.unique
(show (ideal.span {a})^(((multiplicity a b).get h)) ∣ (ideal.span {b}), from _) _).symm ;
rw [ideal.span_singleton_pow, span_singleton_dvd_span_singleton_iff_dvd],
exact pow_multiplicity_dvd h ,
{ exact multiplicity.is_greatest ((part_enat.lt_coe_iff _ _).mpr (exists.intro
(finite_iff_dom.mp h) (nat.lt_succ_self _))) } },
{ suffices : ¬ (finite (ideal.span ({a} : set R)) (ideal.span ({b} : set R))),
{ rw [finite_iff_dom, part_enat.not_dom_iff_eq_top] at h this,
rw [h, this] },
refine not_finite_iff_forall.mpr (λ n, by {rw [ideal.span_singleton_pow,
span_singleton_dvd_span_singleton_iff_dvd], exact not_finite_iff_forall.mp h n }) }
obtain ⟨x, hx⟩ := (normalized_factors_equiv_span_normalized_factors hr).surjective I,
obtain ⟨a, ha⟩ := x,
rw [hx.symm, equiv.symm_apply_apply, subtype.coe_mk,
multiplicity_normalized_factors_equiv_span_normalized_factors_eq_multiplicity hr ha, hx],
end

end PID