Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - chore: strip trailing spaces in lean files #2828

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
19 changes: 9 additions & 10 deletions Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
Original file line number Diff line number Diff line change
Expand Up @@ -162,7 +162,7 @@ instance : Mono (Abelian.factorThruCoimage f) :=
calc
h ≫ f = h ≫ p ≫ i := (Abelian.coimage.fac f).symm ▸ rfl
_ = h ≫ p ≫ cokernel.π g ≫ t := (ht ▸ rfl)
_ = h ≫ u ≫ t := by simp only [Category.assoc]
_ = h ≫ u ≫ t := by simp only [Category.assoc]
_ = 0 ≫ t := by rw [← Category.assoc, hu.w]
_ = 0 := zero_comp
-- h factors through the kernel of f via some l.
Expand Down Expand Up @@ -283,7 +283,7 @@ abbrev σ {A : C} : A ⨯ A ⟶ A :=

end

-- Porting note: simp can prove these
-- Porting note: simp can prove these
@[reassoc]
theorem diag_σ {X : C} : diag X ≫ σ = 0 := by rw [cokernel.condition_assoc, zero_comp]
#align category_theory.non_preadditive_abelian.diag_σ CategoryTheory.NonPreadditiveAbelian.diag_σ
Expand All @@ -296,7 +296,7 @@ theorem lift_σ {X : C} : prod.lift (𝟙 X) 0 ≫ σ = 𝟙 X := by rw [← Cat
theorem lift_map {X Y : C} (f : X ⟶ Y) :
prod.lift (𝟙 X) 0 ≫ Limits.prod.map f f = f ≫ prod.lift (𝟙 Y) 0 := by simp
#align category_theory.non_preadditive_abelian.lift_map CategoryTheory.NonPreadditiveAbelian.lift_map

/-- σ is a cokernel of Δ X. -/
def isColimitσ {X : C} : IsColimit (CokernelCofork.ofπ (σ : X ⨯ X ⟶ X) diag_σ) :=
cokernel.cokernelIso _ σ (asIso (r X)).symm (by rw [Iso.symm_hom, asIso_inv])
Expand All @@ -305,7 +305,7 @@ def isColimitσ {X : C} : IsColimit (CokernelCofork.ofπ (σ : X ⨯ X ⟶ X) d
/-- This is the key identity satisfied by `σ`. -/
theorem σ_comp {X Y : C} (f : X ⟶ Y) : σ ≫ f = Limits.prod.map f f ≫ σ := by
obtain ⟨g, hg⟩ :=
CokernelCofork.IsColimit.desc' isColimitσ (Limits.prod.map f f ≫ σ) (by
CokernelCofork.IsColimit.desc' isColimitσ (Limits.prod.map f f ≫ σ) (by
rw [prod.diag_map_assoc, diag_σ, comp_zero])
suffices hfg : f = g
· rw [← hg, Cofork.π_ofπ, hfg]
Expand All @@ -314,7 +314,7 @@ theorem σ_comp {X Y : C} (f : X ⟶ Y) : σ ≫ f = Limits.prod.map f f ≫ σ
_ = prod.lift (𝟙 X) 0 ≫ Limits.prod.map f f ≫ σ := by rw [lift_map_assoc]
_ = prod.lift (𝟙 X) 0 ≫ σ ≫ g := by rw [← hg, CokernelCofork.π_ofπ]
_ = g := by rw [← Category.assoc, lift_σ, Category.id_comp]

#align category_theory.non_preadditive_abelian.σ_comp CategoryTheory.NonPreadditiveAbelian.σ_comp

section
Expand All @@ -329,7 +329,7 @@ attribute [local instance] hasSub

-- We write `-f` for `0 - f`.
/-- Negation of morphisms in a `NonPreadditiveAbelian` category. -/
def hasNeg {X Y : C} : Neg (X ⟶ Y) where
def hasNeg {X Y : C} : Neg (X ⟶ Y) where
neg := fun f => 0 - f
#align category_theory.non_preadditive_abelian.has_neg CategoryTheory.NonPreadditiveAbelian.hasNeg

Expand Down Expand Up @@ -367,7 +367,7 @@ theorem sub_self {X Y : C} (a : X ⟶ Y) : a - a = 0 := by
theorem lift_sub_lift {X Y : C} (a b c d : X ⟶ Y) :
prod.lift a b - prod.lift c d = prod.lift (a - c) (b - d) := by
simp only [sub_def]
apply prod.hom_ext
apply prod.hom_ext
· rw [Category.assoc, σ_comp, prod.lift_map_assoc, prod.lift_fst, prod.lift_fst, prod.lift_fst]
· rw [Category.assoc, σ_comp, prod.lift_map_assoc, prod.lift_snd, prod.lift_snd, prod.lift_snd]
#align category_theory.non_preadditive_abelian.lift_sub_lift CategoryTheory.NonPreadditiveAbelian.lift_sub_lift
Expand All @@ -393,7 +393,7 @@ theorem add_comm {X Y : C} (a b : X ⟶ Y) : a + b = b + a := by
rw [neg_def, neg_def, neg_def, sub_sub_sub]
conv_lhs =>
congr
next => skip
next => skip
rw [← neg_def, neg_sub]
rw [sub_sub_sub, add_def, ← neg_def, neg_neg b, neg_def]
#align category_theory.non_preadditive_abelian.add_comm CategoryTheory.NonPreadditiveAbelian.add_comm
Expand Down Expand Up @@ -448,7 +448,7 @@ theorem add_comp (X Y Z : C) (f g : X ⟶ Y) (h : Y ⟶ Z) : (f + g) ≫ h = f
/-- Every `NonPreadditiveAbelian` category is preadditive. -/
def preadditive : Preadditive C where
homGroup X Y :=
{ add := (· + ·)
{ add := (· + ·)
add_assoc := add_assoc
zero := 0
zero_add := neg_neg
Expand All @@ -464,4 +464,3 @@ def preadditive : Preadditive C where
end

end CategoryTheory.NonPreadditiveAbelian

76 changes: 38 additions & 38 deletions Mathlib/CategoryTheory/Bicategory/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ class Bicategory (B : Type u) extends CategoryStruct.{v} B where
-- right unitor:
rightUnitor {a b : B} (f : a ⟶ b) : f ≫ 𝟙 b ≅ f
-- axioms for left whiskering:
whiskerLeft_id : ∀ {a b c} (f : a ⟶ b) (g : b ⟶ c), whiskerLeft f (𝟙 g) = 𝟙 (f ≫ g) :=
whiskerLeft_id : ∀ {a b c} (f : a ⟶ b) (g : b ⟶ c), whiskerLeft f (𝟙 g) = 𝟙 (f ≫ g) :=
by aesop_cat
whiskerLeft_comp :
∀ {a b c} (f : a ⟶ b) {g h i : b ⟶ c} (η : g ⟶ h) (θ : h ⟶ i),
Expand Down Expand Up @@ -125,7 +125,7 @@ class Bicategory (B : Type u) extends CategoryStruct.{v} B where
-- triangle identity:
triangle :
∀ {a b c} (f : a ⟶ b) (g : b ⟶ c),
(associator f (𝟙 b) g).hom ≫ whiskerLeft f (leftUnitor g).hom
(associator f (𝟙 b) g).hom ≫ whiskerLeft f (leftUnitor g).hom
= whiskerRight (rightUnitor f).hom g := by
aesop_cat
#align category_theory.bicategory CategoryTheory.Bicategory
Expand Down Expand Up @@ -178,14 +178,14 @@ Note that `f₁ ◁ f₂ ◁ f₃ ◁ η ▷ f₄ ▷ f₅` is actually `f₁
attribute [instance] homCategory

attribute [reassoc]
whiskerLeft_comp id_whiskerLeft comp_whiskerLeft comp_whiskerRight whiskerRight_id
whiskerRight_comp whisker_assoc whisker_exchange
whiskerLeft_comp id_whiskerLeft comp_whiskerLeft comp_whiskerRight whiskerRight_id
whiskerRight_comp whisker_assoc whisker_exchange

attribute [reassoc (attr := simp)] pentagon triangle
/-
The following simp attributes are put in order to rewrite any 2-morphisms into normal forms. There
are associators and unitors in the RHS in the several simp lemmas here (e.g. `id_whiskerLeft`),
which at first glance look more complicated than the LHS, but they will be eventually reduced by
which at first glance look more complicated than the LHS, but they will be eventually reduced by
the pentagon or the triangle identities, and more generally, (forthcoming) `coherence` tactic.
-/
attribute [simp]
Expand All @@ -203,7 +203,7 @@ theorem hom_inv_whiskerLeft (f : a ⟶ b) {g h : b ⟶ c} (η : g ≅ h) :
@[reassoc (attr := simp)]
theorem hom_inv_whiskerRight {f g : a ⟶ b} (η : f ≅ g) (h : b ⟶ c) :
η.hom ▷ h ≫ η.inv ▷ h = 𝟙 (f ≫ h) := by rw [← comp_whiskerRight, hom_inv_id, id_whiskerRight]
#align category_theory.bicategory.hom_inv_whisker_right
#align category_theory.bicategory.hom_inv_whisker_right
CategoryTheory.Bicategory.hom_inv_whiskerRight

@[reassoc (attr := simp)]
Expand All @@ -214,7 +214,7 @@ theorem inv_hom_whiskerLeft (f : a ⟶ b) {g h : b ⟶ c} (η : g ≅ h) :
@[reassoc (attr := simp)]
theorem inv_hom_whiskerRight {f g : a ⟶ b} (η : f ≅ g) (h : b ⟶ c) :
η.inv ▷ h ≫ η.hom ▷ h = 𝟙 (g ≫ h) := by rw [← comp_whiskerRight, inv_hom_id, id_whiskerRight]
#align category_theory.bicategory.inv_hom_whisker_right
#align category_theory.bicategory.inv_hom_whisker_right
CategoryTheory.Bicategory.inv_hom_whiskerRight

/-- The left whiskering of a 2-isomorphism is a 2-isomorphism. -/
Expand All @@ -230,9 +230,9 @@ instance whiskerLeft_isIso (f : a ⟶ b) {g h : b ⟶ c} (η : g ⟶ h) [IsIso
#align category_theory.bicategory.whisker_left_is_iso CategoryTheory.Bicategory.whiskerLeft_isIso

@[simp]
theorem inv_whiskerLeft (f : a ⟶ b) {g h : b ⟶ c} (η : g ⟶ h) [IsIso η] :
theorem inv_whiskerLeft (f : a ⟶ b) {g h : b ⟶ c} (η : g ⟶ h) [IsIso η] :
inv (f ◁ η) = f ◁ inv η := by
aesop_cat
aesop_cat
simp only [← whiskerLeft_comp, whiskerLeft_id, IsIso.hom_inv_id]
#align category_theory.bicategory.inv_whisker_left CategoryTheory.Bicategory.inv_whiskerLeft

Expand All @@ -246,13 +246,13 @@ def whiskerRightIso {f g : a ⟶ b} (η : f ≅ g) (h : b ⟶ c) : f ≫ h ≅ g

instance whiskerRight_isIso {f g : a ⟶ b} (η : f ⟶ g) (h : b ⟶ c) [IsIso η] : IsIso (η ▷ h) :=
IsIso.of_iso (whiskerRightIso (asIso η) h)
#align category_theory.bicategory.whisker_right_is_iso
#align category_theory.bicategory.whisker_right_is_iso
CategoryTheory.Bicategory.whiskerRight_isIso

@[simp]
theorem inv_whiskerRight {f g : a ⟶ b} (η : f ⟶ g) (h : b ⟶ c) [IsIso η] :
inv (η ▷ h) = inv η ▷ h := by
aesop_cat
aesop_cat
simp only [← comp_whiskerRight, id_whiskerRight, IsIso.hom_inv_id]
#align category_theory.bicategory.inv_whisker_right CategoryTheory.Bicategory.inv_whiskerRight

Expand All @@ -270,31 +270,31 @@ theorem pentagon_inv_inv_hom_hom_inv (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (
by
rw [← cancel_epi (f ◁ (α_ g h i).inv), ← cancel_mono (α_ (f ≫ g) h i).inv]
simp
#align category_theory.bicategory.pentagon_inv_inv_hom_hom_inv
#align category_theory.bicategory.pentagon_inv_inv_hom_hom_inv
CategoryTheory.Bicategory.pentagon_inv_inv_hom_hom_inv

@[reassoc (attr := simp)]
theorem pentagon_inv_hom_hom_hom_inv (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : d ⟶ e) :
(α_ (f ≫ g) h i).inv ≫ (α_ f g h).hom ▷ i ≫ (α_ f (g ≫ h) i).hom =
(α_ f g (h ≫ i)).hom ≫ f ◁ (α_ g h i).inv :=
eq_of_inv_eq_inv (by simp)
#align category_theory.bicategory.pentagon_inv_hom_hom_hom_inv
#align category_theory.bicategory.pentagon_inv_hom_hom_hom_inv
CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_inv

@[reassoc (attr := simp)]
theorem pentagon_hom_inv_inv_inv_inv (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : d ⟶ e) :
f ◁ (α_ g h i).hom ≫ (α_ f g (h ≫ i)).inv ≫ (α_ (f ≫ g) h i).inv =
(α_ f (g ≫ h) i).inv ≫ (α_ f g h).inv ▷ i :=
by simp [← cancel_epi (f ◁ (α_ g h i).inv)]
#align category_theory.bicategory.pentagon_hom_inv_inv_inv_inv
#align category_theory.bicategory.pentagon_hom_inv_inv_inv_inv
CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_inv

@[reassoc (attr := simp)]
theorem pentagon_hom_hom_inv_hom_hom (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : d ⟶ e) :
(α_ (f ≫ g) h i).hom ≫ (α_ f g (h ≫ i)).hom ≫ f ◁ (α_ g h i).inv =
(α_ f g h).hom ▷ i ≫ (α_ f (g ≫ h) i).hom :=
eq_of_inv_eq_inv (by simp)
#align category_theory.bicategory.pentagon_hom_hom_inv_hom_hom
#align category_theory.bicategory.pentagon_hom_hom_inv_hom_hom
CategoryTheory.Bicategory.pentagon_hom_hom_inv_hom_hom

@[reassoc (attr := simp)]
Expand All @@ -304,118 +304,118 @@ theorem pentagon_hom_inv_inv_inv_hom (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (
by
rw [← cancel_epi (α_ f g (h ≫ i)).inv, ← cancel_mono ((α_ f g h).inv ▷ i)]
simp
#align category_theory.bicategory.pentagon_hom_inv_inv_inv_hom
#align category_theory.bicategory.pentagon_hom_inv_inv_inv_hom
CategoryTheory.Bicategory.pentagon_hom_inv_inv_inv_hom

@[reassoc (attr := simp)]
theorem pentagon_hom_hom_inv_inv_hom (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : d ⟶ e) :
(α_ f (g ≫ h) i).hom ≫ f ◁ (α_ g h i).hom ≫ (α_ f g (h ≫ i)).inv =
(α_ f g h).inv ▷ i ≫ (α_ (f ≫ g) h i).hom :=
eq_of_inv_eq_inv (by simp)
#align category_theory.bicategory.pentagon_hom_hom_inv_inv_hom
#align category_theory.bicategory.pentagon_hom_hom_inv_inv_hom
CategoryTheory.Bicategory.pentagon_hom_hom_inv_inv_hom

@[reassoc (attr := simp)]
theorem pentagon_inv_hom_hom_hom_hom (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : d ⟶ e) :
(α_ f g h).inv ▷ i ≫ (α_ (f ≫ g) h i).hom ≫ (α_ f g (h ≫ i)).hom =
(α_ f (g ≫ h) i).hom ≫ f ◁ (α_ g h i).hom :=
by simp [← cancel_epi ((α_ f g h).hom ▷ i)]
#align category_theory.bicategory.pentagon_inv_hom_hom_hom_hom
#align category_theory.bicategory.pentagon_inv_hom_hom_hom_hom
CategoryTheory.Bicategory.pentagon_inv_hom_hom_hom_hom

@[reassoc (attr := simp)]
theorem pentagon_inv_inv_hom_inv_inv (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) (i : d ⟶ e) :
(α_ f g (h ≫ i)).inv ≫ (α_ (f ≫ g) h i).inv ≫ (α_ f g h).hom ▷ i =
f ◁ (α_ g h i).inv ≫ (α_ f (g ≫ h) i).inv :=
eq_of_inv_eq_inv (by simp)
#align category_theory.bicategory.pentagon_inv_inv_hom_inv_inv
#align category_theory.bicategory.pentagon_inv_inv_hom_inv_inv
CategoryTheory.Bicategory.pentagon_inv_inv_hom_inv_inv

theorem triangle_assoc_comp_left (f : a ⟶ b) (g : b ⟶ c) :
(α_ f (𝟙 b) g).hom ≫ f ◁ (λ_ g).hom = (ρ_ f).hom ▷ g :=
triangle f g
#align category_theory.bicategory.triangle_assoc_comp_left
#align category_theory.bicategory.triangle_assoc_comp_left
CategoryTheory.Bicategory.triangle_assoc_comp_left

@[reassoc (attr := simp)]
theorem triangle_assoc_comp_right (f : a ⟶ b) (g : b ⟶ c) :
(α_ f (𝟙 b) g).inv ≫ (ρ_ f).hom ▷ g = f ◁ (λ_ g).hom := by rw [← triangle, inv_hom_id_assoc]
#align category_theory.bicategory.triangle_assoc_comp_right
#align category_theory.bicategory.triangle_assoc_comp_right
CategoryTheory.Bicategory.triangle_assoc_comp_right

@[reassoc (attr := simp)]
theorem triangle_assoc_comp_right_inv (f : a ⟶ b) (g : b ⟶ c) :
(ρ_ f).inv ▷ g ≫ (α_ f (𝟙 b) g).hom = f ◁ (λ_ g).inv := by
(ρ_ f).inv ▷ g ≫ (α_ f (𝟙 b) g).hom = f ◁ (λ_ g).inv := by
simp [← cancel_mono (f ◁ (λ_ g).hom)]
#align category_theory.bicategory.triangle_assoc_comp_right_inv
#align category_theory.bicategory.triangle_assoc_comp_right_inv
CategoryTheory.Bicategory.triangle_assoc_comp_right_inv

@[reassoc (attr := simp)]
theorem triangle_assoc_comp_left_inv (f : a ⟶ b) (g : b ⟶ c) :
f ◁ (λ_ g).inv ≫ (α_ f (𝟙 b) g).inv = (ρ_ f).inv ▷ g := by
f ◁ (λ_ g).inv ≫ (α_ f (𝟙 b) g).inv = (ρ_ f).inv ▷ g := by
simp [← cancel_mono ((ρ_ f).hom ▷ g)]
#align category_theory.bicategory.triangle_assoc_comp_left_inv
#align category_theory.bicategory.triangle_assoc_comp_left_inv
CategoryTheory.Bicategory.triangle_assoc_comp_left_inv

@[reassoc]
theorem associator_naturality_left {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) (h : c ⟶ d) :
η ▷ g ▷ h ≫ (α_ f' g h).hom = (α_ f g h).hom ≫ η ▷ (g ≫ h) := by simp
#align category_theory.bicategory.associator_naturality_left
#align category_theory.bicategory.associator_naturality_left
CategoryTheory.Bicategory.associator_naturality_left

@[reassoc]
theorem associator_inv_naturality_left {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) (h : c ⟶ d) :
η ▷ (g ≫ h) ≫ (α_ f' g h).inv = (α_ f g h).inv ≫ η ▷ g ▷ h := by simp
#align category_theory.bicategory.associator_inv_naturality_left
#align category_theory.bicategory.associator_inv_naturality_left
CategoryTheory.Bicategory.associator_inv_naturality_left

@[reassoc]
theorem whiskerRight_comp_symm {f f' : a ⟶ b} (η : f ⟶ f') (g : b ⟶ c) (h : c ⟶ d) :
η ▷ g ▷ h = (α_ f g h).hom ≫ η ▷ (g ≫ h) ≫ (α_ f' g h).inv := by simp
#align category_theory.bicategory.whisker_right_comp_symm
#align category_theory.bicategory.whisker_right_comp_symm
CategoryTheory.Bicategory.whiskerRight_comp_symm

@[reassoc]
theorem associator_naturality_middle (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') (h : c ⟶ d) :
(f ◁ η) ▷ h ≫ (α_ f g' h).hom = (α_ f g h).hom ≫ f ◁ η ▷ h := by simp
#align category_theory.bicategory.associator_naturality_middle
#align category_theory.bicategory.associator_naturality_middle
CategoryTheory.Bicategory.associator_naturality_middle

@[reassoc]
theorem associator_inv_naturality_middle (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') (h : c ⟶ d) :
f ◁ η ▷ h ≫ (α_ f g' h).inv = (α_ f g h).inv ≫ (f ◁ η) ▷ h := by simp
#align category_theory.bicategory.associator_inv_naturality_middle
#align category_theory.bicategory.associator_inv_naturality_middle
CategoryTheory.Bicategory.associator_inv_naturality_middle

@[reassoc]
theorem whisker_assoc_symm (f : a ⟶ b) {g g' : b ⟶ c} (η : g ⟶ g') (h : c ⟶ d) :
f ◁ η ▷ h = (α_ f g h).inv ≫ (f ◁ η) ▷ h ≫ (α_ f g' h).hom := by simp
#align category_theory.bicategory.whisker_assoc_symm
#align category_theory.bicategory.whisker_assoc_symm
CategoryTheory.Bicategory.whisker_assoc_symm

@[reassoc]
theorem associator_naturality_right (f : a ⟶ b) (g : b ⟶ c) {h h' : c ⟶ d} (η : h ⟶ h') :
(f ≫ g) ◁ η ≫ (α_ f g h').hom = (α_ f g h).hom ≫ f ◁ g ◁ η := by simp
#align category_theory.bicategory.associator_naturality_right
#align category_theory.bicategory.associator_naturality_right
CategoryTheory.Bicategory.associator_naturality_right

@[reassoc]
theorem associator_inv_naturality_right (f : a ⟶ b) (g : b ⟶ c) {h h' : c ⟶ d} (η : h ⟶ h') :
f ◁ g ◁ η ≫ (α_ f g h').inv = (α_ f g h).inv ≫ (f ≫ g) ◁ η := by simp
#align category_theory.bicategory.associator_inv_naturality_right
#align category_theory.bicategory.associator_inv_naturality_right
CategoryTheory.Bicategory.associator_inv_naturality_right

@[reassoc]
theorem comp_whiskerLeft_symm (f : a ⟶ b) (g : b ⟶ c) {h h' : c ⟶ d} (η : h ⟶ h') :
f ◁ g ◁ η = (α_ f g h).inv ≫ (f ≫ g) ◁ η ≫ (α_ f g h').hom := by simp
#align category_theory.bicategory.comp_whisker_left_symm
#align category_theory.bicategory.comp_whisker_left_symm
CategoryTheory.Bicategory.comp_whiskerLeft_symm

@[reassoc]
theorem leftUnitor_naturality {f g : a ⟶ b} (η : f ⟶ g) :
theorem leftUnitor_naturality {f g : a ⟶ b} (η : f ⟶ g) :
𝟙 a ◁ η ≫ (λ_ g).hom = (λ_ f).hom ≫ η :=
by simp
#align category_theory.bicategory.left_unitor_naturality
#align category_theory.bicategory.left_unitor_naturality
CategoryTheory.Bicategory.leftUnitor_naturality

@[reassoc]
Expand Down Expand Up @@ -470,7 +470,7 @@ theorem whiskerLeft_rightUnitor (f : a ⟶ b) (g : b ⟶ c) :
rw [← whiskerRight_iff, comp_whiskerRight, ← cancel_epi (α_ _ _ _).inv, ←
cancel_epi (f ◁ (α_ _ _ _).inv), pentagon_inv_assoc, triangle_assoc_comp_right, ←
associator_inv_naturality_middle, ← whiskerLeft_comp_assoc, triangle_assoc_comp_right,
associator_inv_naturality_right]
associator_inv_naturality_right]
#align category_theory.bicategory.whisker_left_right_unitor CategoryTheory.Bicategory.whiskerLeft_rightUnitor

@[reassoc, simp]
Expand Down Expand Up @@ -510,7 +510,7 @@ theorem rightUnitor_comp_inv (f : a ⟶ b) (g : b ⟶ c) :
@[simp]
theorem unitors_equal : (λ_ (𝟙 a)).hom = (ρ_ (𝟙 a)).hom := by
rw [← whiskerLeft_iff, ← cancel_epi (α_ _ _ _).hom, ← cancel_mono (ρ_ _).hom, triangle, ←
rightUnitor_comp, rightUnitor_naturality]
rightUnitor_comp, rightUnitor_naturality]
#align category_theory.bicategory.unitors_equal CategoryTheory.Bicategory.unitors_equal

@[simp]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Category/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ which adds the `CategoryTheory` rule set,
and allows `aesop` look through semireducible definitions when calling `intros`. -/
macro (name := aesop_cat) "aesop_cat" c:Aesop.tactic_clause*: tactic =>
`(tactic|
aesop $c* (options := { introsTransparency? := some .default, warnOnNonterminal := false })
aesop $c* (options := { introsTransparency? := some .default, warnOnNonterminal := false })
(rule_sets [$(Lean.mkIdent `CategoryTheory):ident]))

-- We turn on `ext` inside `aesop_cat`.
Expand Down