-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.lua
156 lines (130 loc) · 4.18 KB
/
dataloader.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
--
-- Copyright (c) 2016, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
-- Multi-threaded data loader
--
local datasets = require 'datasets/init'
local Threads = require 'threads'
Threads.serialization('threads.sharedserialize')
local M = {}
local DataLoader = torch.class('resnet.DataLoader', M)
function DataLoader.create(opt)
-- The train and val loader
local loaders = {}
for i, split in ipairs{'train', 'val'} do
local dataset = datasets.create(opt, split)
loaders[i] = M.DataLoader(dataset, opt, split)
end
return table.unpack(loaders)
end
function DataLoader:__init(dataset, opt, split)
local manualSeed = opt.manualSeed or 0
local function init()
require('datasets/' .. opt.dataset)
end
local function main(idx)
if manualSeed ~= 0 then
torch.manualSeed(manualSeed + idx)
end
torch.setnumthreads(1)
_G.dataset = dataset
_G.preprocess = dataset:preprocess()
_G.get_input_target = dataset:get_input_target()
return dataset:size()
end
local threads, sizes = Threads(opt.nThreads, init, main)
self.nCrops = 1
self.threads = threads
self.__size = sizes[1][1]
self.batchSize = opt.batch_size
end
function DataLoader:size()
return math.ceil(self.__size / self.batchSize)
end
function DataLoader:get()
self.loop = self.loop or self:run()
local n, out = self.loop()
if out then
return out
else
print ('new loop')
self.loop = self:run()
local n, out = self.loop()
return out
end
end
function DataLoader:run()
local threads = self.threads
local size, batchSize = self.__size, self.batchSize
local perm = torch.randperm(size)
local idx, sample = 1, nil
local function enqueue()
while idx <= size and threads:acceptsjob() do
local indices = torch.Tensor(batchSize):random(size)
threads:addjob(
function(indices, nCrops)
local sz = indices:size(1)
local batch_input, batch_target, imageSize
for i, idx in ipairs(indices:totable()) do
-- if it's too small reject
local out = _G.dataset:get(idx)
if not out then
while true do
out = _G.dataset:get(torch.random(size))
if out then
break
end
end
end
local img = _G.preprocess(out.img)
local sample = _G.get_input_target(img)
local input = sample.input
local target = sample.target
if not batch_target then
imageSize = input:size():totable()
targetSize = target:size():totable()
-- if nCrops > 1 then table.remove(imageSize, 1) end
batch_input = torch.FloatTensor(sz, table.unpack(imageSize))
batch_target = torch.FloatTensor(sz, table.unpack(targetSize))
end
batch_input[i]:copy(sample.input)
batch_target[i]:copy(sample.target)
end
collectgarbage()
return {
input = batch_input,
target = batch_target,
}
end,
function(_sample_)
sample = _sample_
end,
indices,
self.nCrops
)
idx = idx + batchSize
end
end
local n = 0
local function loop()
enqueue()
if not threads:hasjob() then
return -1, nil
end
threads:dojob()
if threads:haserror() then
threads:synchronize()
end
enqueue()
n = n + 1
-- local ss = sample.input:clone()
return n, sample
end
return loop
end
return M.DataLoader