Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?


Failed to load latest commit information.
Latest commit message
Commit time


Build Status

Gitter channel

This repository contains assorted example projects for libopencm3.

The libopencm3 project aims to create an open-source firmware library for various ARM Cortex-M microcontrollers.

For more information visit

The examples are meant as starting points for different subsystems on multitude of platforms. If you're just looking to test your build environment and hardware, the libopencm3-miniblink may be more useful, as it covers many more boards, but it is much more limited.

Feel free to add new examples and send them to us either via the mailinglist or preferably via a github pull request.


You must run "make" in the top level directory first. This builds the library and all examples. If you're simply hacking on a single example after that, you can type "make clean; make" in any of the individual project directories later.

For more verbose output, to see compiler command lines, use "make V=1" For insanity levels of verboseness, use "make V=99"

The makefiles are generally useable for your own projects with only minimal changes for the libopencm3 install path (See Reuse)

Make Flash Target

Please note, the "make flash" target is complicated and not always self-consistent. Please see: #34

For flashing the 'miniblink' example (after you built libopencm3 and the examples by typing 'make' at the top-level directory) onto the Olimex STM32-H103 eval board (ST STM32F1 series microcontroller), you can execute:

cd examples/stm32/f1/stm32-h103/miniblink
make flash V=1

The Makefiles of the examples are configured to use a certain OpenOCD flash programmer, you might need to change some of the variables in the Makefile if you use a different one.

To program via a Black Magic Probe, simply provide the serial port, eg:

cd examples/stm32/f1/stm32-h103/miniblink
make flash BMP_PORT=/dev/ttyACM0

To program via texane/stlink (st-flash utility), use the special target:

cd examples/stm32/f1/stm32vl-discovery/miniblink
make miniblink.stlink-flash

If you rather use GDB to connect to the st-util you can provide the STLINK_PORT to the flash target.

cd examples/stm32/f1/stm32vl-discovery/miniblink
make flash STLINK_PORT=:4242

Flashing Manually

You can also flash manually. Using a miriad of different tools depending on your setup. Here are a few examples.


openocd -f interface/jtagkey-tiny.cfg -f target/stm32f1x.cfg
telnet localhost 4444
reset halt
flash write_image erase foobar.hex

Replace the "jtagkey-tiny.cfg" with whatever JTAG device you are using, and/or replace "stm32f1x.cfg" with your respective config file. Replace "foobar.hex" with the file name of the image you want to flash.

Black Magic Probe

cd examples/stm32/f1/stm32vl-discovery/miniblink
arm-none-eabi-gdb miniblink.elf
target extended_remote /dev/ttyACM0
monitor swdp_scan
attach 1

To exit the gdb session type <Ctrl>-C and <Ctrl>-D. It is useful to add the following to the .gdbinit to make the flashing and debugging easier:

set target-async on
set confirm off
set mem inaccessible-by-default off
#set debug remote 1
tar ext /dev/ttyACM0
mon version
mon swdp_scan
att 1

Having this in your .gdbinit boils down the flashing/debugging process to:

cd examples/stm32/f1/stm32vl-discovery/miniblink
arm-none-eabi-gdb miniblink.elf

ST-Link (st-util)

This example uses the st-util by texane that you can find on GitHub.

cd examples/stm32/f1/stm32vl-discovery/miniblink
arm-none-eabi-gdb miniblink.elf
target extended-remote :4242


If you want to use libopencm3 in your own project, the easiest way is to use the template repository we created for this purpose.



Simple example projects showing how to use libopencm3.






No releases published


No packages published