forked from bitcoinsv/bsvd
-
Notifications
You must be signed in to change notification settings - Fork 1
/
chainio.go
1537 lines (1366 loc) · 53.2 KB
/
chainio.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2015-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain
import (
"bytes"
"encoding/binary"
"fmt"
"math/big"
"sync"
"time"
"github.com/bitcoinsv/bsvd/chaincfg/chainhash"
"github.com/bitcoinsv/bsvd/database"
"github.com/bitcoinsv/bsvd/wire"
"github.com/bitcoinsv/bsvutil"
)
const (
// blockHdrSize is the size of a block header. This is simply the
// constant from wire and is only provided here for convenience since
// wire.MaxBlockHeaderPayload is quite long.
blockHdrSize = wire.MaxBlockHeaderPayload
// latestUtxoSetBucketVersion is the current version of the utxo set
// bucket that is used to track all unspent outputs.
latestUtxoSetBucketVersion = 2
// latestSpendJournalBucketVersion is the current version of the spend
// journal bucket that is used to track all spent transactions for use
// in reorgs.
latestSpendJournalBucketVersion = 1
)
var (
// blockIndexBucketName is the name of the db bucket used to house to the
// block headers and contextual information.
blockIndexBucketName = []byte("blockheaderidx")
// hashIndexBucketName is the name of the db bucket used to house to the
// block hash -> block height index.
hashIndexBucketName = []byte("hashidx")
// heightIndexBucketName is the name of the db bucket used to house to
// the block height -> block hash index.
heightIndexBucketName = []byte("heightidx")
// chainStateKeyName is the name of the db key used to store the best
// chain state.
chainStateKeyName = []byte("chainstate")
// spendJournalVersionKeyName is the name of the db key used to store
// the version of the spend journal currently in the database.
spendJournalVersionKeyName = []byte("spendjournalversion")
// spendJournalBucketName is the name of the db bucket used to house
// transactions outputs that are spent in each block.
spendJournalBucketName = []byte("spendjournal")
// utxoStateConsistencyKeyName is the name of the db key used to store the
// consistency status of the utxo state.
utxoStateConsistencyKeyName = []byte("utxostateconsistency")
// utxoSetVersionKeyName is the name of the db key used to store the
// version of the utxo set currently in the database.
utxoSetVersionKeyName = []byte("utxosetversion")
// utxoSetBucketName is the name of the db bucket used to house the
// unspent transaction output set.
utxoSetBucketName = []byte("utxosetv2")
// pruneHeightKeyName is the name of the db key used to store the
// height at which the blockchain is pruned.
pruneHeightKeyName = []byte("pruneheight")
// byteOrder is the preferred byte order used for serializing numeric
// fields for storage in the database.
byteOrder = binary.LittleEndian
)
// errNotInMainChain signifies that a block hash or height that is not in the
// main chain was requested.
type errNotInMainChain string
// Error implements the error interface.
func (e errNotInMainChain) Error() string {
return string(e)
}
// isNotInMainChainErr returns whether or not the passed error is an
// errNotInMainChain error.
func isNotInMainChainErr(err error) bool {
_, ok := err.(errNotInMainChain)
return ok
}
// errDeserialize signifies that a problem was encountered when deserializing
// data.
type errDeserialize string
// Error implements the error interface.
func (e errDeserialize) Error() string {
return string(e)
}
// isDeserializeErr returns whether or not the passed error is an errDeserialize
// error.
func isDeserializeErr(err error) bool {
_, ok := err.(errDeserialize)
return ok
}
// isDbBucketNotFoundErr returns whether or not the passed error is a
// database.Error with an error code of database.ErrBucketNotFound.
func isDbBucketNotFoundErr(err error) bool {
dbErr, ok := err.(database.Error)
return ok && dbErr.ErrorCode == database.ErrBucketNotFound
}
// dbFetchVersion fetches an individual version with the given key from the
// metadata bucket. It is primarily used to track versions on entities such as
// buckets. It returns zero if the provided key does not exist.
func dbFetchVersion(dbTx database.Tx, key []byte) uint32 {
serialized := dbTx.Metadata().Get(key)
if serialized == nil {
return 0
}
return byteOrder.Uint32(serialized[:])
}
// dbPutVersion uses an existing database transaction to update the provided
// key in the metadata bucket to the given version. It is primarily used to
// track versions on entities such as buckets.
func dbPutVersion(dbTx database.Tx, key []byte, version uint32) error {
var serialized [4]byte
byteOrder.PutUint32(serialized[:], version)
return dbTx.Metadata().Put(key, serialized[:])
}
// dbFetchOrCreateVersion uses an existing database transaction to attempt to
// fetch the provided key from the metadata bucket as a version and in the case
// it doesn't exist, it adds the entry with the provided default version and
// returns that. This is useful during upgrades to automatically handle loading
// and adding version keys as necessary.
func dbFetchOrCreateVersion(dbTx database.Tx, key []byte, defaultVersion uint32) (uint32, error) {
version := dbFetchVersion(dbTx, key)
if version == 0 {
version = defaultVersion
err := dbPutVersion(dbTx, key, version)
if err != nil {
return 0, err
}
}
return version, nil
}
// -----------------------------------------------------------------------------
// The transaction spend journal consists of an entry for each block connected
// to the main chain which contains the transaction outputs the block spends
// serialized such that the order is the reverse of the order they were spent.
//
// This is required because reorganizing the chain necessarily entails
// disconnecting blocks to get back to the point of the fork which implies
// unspending all of the transaction outputs that each block previously spent.
// Since the utxo set, by definition, only contains unspent transaction outputs,
// the spent transaction outputs must be resurrected from somewhere. There is
// more than one way this could be done, however this is the most straight
// forward method that does not require having a transaction index and unpruned
// blockchain.
//
// NOTE: This format is NOT self describing. The additional details such as
// the number of entries (transaction inputs) are expected to come from the
// block itself and the utxo set (for legacy entries). The rationale in doing
// this is to save space. This is also the reason the spent outputs are
// serialized in the reverse order they are spent because later transactions are
// allowed to spend outputs from earlier ones in the same block.
//
// The reserved field below used to keep track of the version of the containing
// transaction when the height in the header code was non-zero, however the
// height is always non-zero now, but keeping the extra reserved field allows
// backwards compatibility.
//
// The serialized format is:
//
// [<header code><reserved><compressed txout>],...
//
// Field Type Size
// header code VLQ variable
// reserved byte 1
// compressed txout
// compressed amount VLQ variable
// compressed script []byte variable
//
// The serialized header code format is:
// bit 0 - containing transaction is a coinbase
// bits 1-x - height of the block that contains the spent txout
//
// Example 1:
// From block 170 in main blockchain.
//
// 1300320511db93e1dcdb8a016b49840f8c53bc1eb68a382e97b1482ecad7b148a6909a5c
// <><><------------------------------------------------------------------>
// | | |
// | reserved compressed txout
// header code
//
// - header code: 0x13 (coinbase, height 9)
// - reserved: 0x00
// - compressed txout 0:
// - 0x32: VLQ-encoded compressed amount for 5000000000 (50 BSV)
// - 0x05: special script type pay-to-pubkey
// - 0x11...5c: x-coordinate of the pubkey
//
// Example 2:
// Adapted from block 100025 in main blockchain.
//
// 8b99700091f20f006edbc6c4d31bae9f1ccc38538a114bf42de65e868b99700086c64700b2fb57eadf61e106a100a7445a8c3f67898841ec
// <----><><----------------------------------------------><----><><---------------------------------------------->
// | | | | | |
// | reserved compressed txout | reserved compressed txout
// header code header code
//
// - Last spent output:
// - header code: 0x8b9970 (not coinbase, height 100024)
// - reserved: 0x00
// - compressed txout:
// - 0x91f20f: VLQ-encoded compressed amount for 34405000000 (344.05 BSV)
// - 0x00: special script type pay-to-pubkey-hash
// - 0x6e...86: pubkey hash
// - Second to last spent output:
// - header code: 0x8b9970 (not coinbase, height 100024)
// - reserved: 0x00
// - compressed txout:
// - 0x86c647: VLQ-encoded compressed amount for 13761000000 (137.61 BSV)
// - 0x00: special script type pay-to-pubkey-hash
// - 0xb2...ec: pubkey hash
// -----------------------------------------------------------------------------
// SpentTxOut contains a spent transaction output and potentially additional
// contextual information such as whether or not it was contained in a coinbase
// transaction, the version of the transaction it was contained in, and which
// block height the containing transaction was included in. As described in
// the comments above, the additional contextual information will only be valid
// when this spent txout is spending the last unspent output of the containing
// transaction.
type SpentTxOut struct {
// Amount is the amount of the output.
Amount int64
// PkScipt is the the public key script for the output.
PkScript []byte
// Height is the height of the the block containing the creating tx.
Height int32
// Denotes if the creating tx is a coinbase.
IsCoinBase bool
}
// FetchSpendJournal attempts to retrieve the spend journal, or the set of
// outputs spent for the target block. This provides a view of all the outputs
// that will be consumed once the target block is connected to the end of the
// main chain.
//
// This function is safe for concurrent access.
func (b *BlockChain) FetchSpendJournal(targetBlock *bsvutil.Block) ([]SpentTxOut, error) {
b.chainLock.RLock()
defer b.chainLock.RUnlock()
var spendEntries []SpentTxOut
err := b.db.View(func(dbTx database.Tx) error {
var err error
spendEntries, err = dbFetchSpendJournalEntry(dbTx, targetBlock)
return err
})
if err != nil {
return nil, err
}
return spendEntries, nil
}
// spentTxOutHeaderCode returns the calculated header code to be used when
// serializing the provided stxo entry.
func spentTxOutHeaderCode(stxo *SpentTxOut) uint64 {
// As described in the serialization format comments, the header code
// encodes the height shifted over one bit and the coinbase flag in the
// lowest bit.
headerCode := uint64(stxo.Height) << 1
if stxo.IsCoinBase {
headerCode |= 0x01
}
return headerCode
}
// spentTxOutSerializeSize returns the number of bytes it would take to
// serialize the passed stxo according to the format described above.
func spentTxOutSerializeSize(stxo *SpentTxOut) int {
size := serializeSizeVLQ(spentTxOutHeaderCode(stxo))
if stxo.Height > 0 {
// The legacy v1 spend journal format conditionally tracked the
// containing transaction version when the height was non-zero,
// so this is required for backwards compat.
size += serializeSizeVLQ(0)
}
return size + compressedTxOutSize(uint64(stxo.Amount), stxo.PkScript)
}
// putSpentTxOut serializes the passed stxo according to the format described
// above directly into the passed target byte slice. The target byte slice must
// be at least large enough to handle the number of bytes returned by the
// SpentTxOutSerializeSize function or it will panic.
func putSpentTxOut(target []byte, stxo *SpentTxOut) int {
headerCode := spentTxOutHeaderCode(stxo)
offset := putVLQ(target, headerCode)
if stxo.Height > 0 {
// The legacy v1 spend journal format conditionally tracked the
// containing transaction version when the height was non-zero,
// so this is required for backwards compat.
offset += putVLQ(target[offset:], 0)
}
return offset + putCompressedTxOut(target[offset:], uint64(stxo.Amount),
stxo.PkScript)
}
// decodeSpentTxOut decodes the passed serialized stxo entry, possibly followed
// by other data, into the passed stxo struct. It returns the number of bytes
// read.
func decodeSpentTxOut(serialized []byte, stxo *SpentTxOut) (int, error) {
// Ensure there are bytes to decode.
if len(serialized) == 0 {
return 0, errDeserialize("no serialized bytes")
}
// Deserialize the header code.
code, offset := deserializeVLQ(serialized)
if offset >= len(serialized) {
return offset, errDeserialize("unexpected end of data after " +
"header code")
}
// Decode the header code.
//
// Bit 0 indicates containing transaction is a coinbase.
// Bits 1-x encode height of containing transaction.
stxo.IsCoinBase = code&0x01 != 0
stxo.Height = int32(code >> 1)
if stxo.Height > 0 {
// The legacy v1 spend journal format conditionally tracked the
// containing transaction version when the height was non-zero,
// so this is required for backwards compat.
_, bytesRead := deserializeVLQ(serialized[offset:])
offset += bytesRead
if offset >= len(serialized) {
return offset, errDeserialize("unexpected end of data " +
"after reserved")
}
}
// Decode the compressed txout.
amount, pkScript, bytesRead, err := decodeCompressedTxOut(
serialized[offset:])
offset += bytesRead
if err != nil {
return offset, errDeserialize(fmt.Sprintf("unable to decode "+
"txout: %v", err))
}
stxo.Amount = int64(amount)
stxo.PkScript = pkScript
return offset, nil
}
// deserializeSpendJournalEntry decodes the passed serialized byte slice into a
// slice of spent txouts according to the format described in detail above.
//
// Since the serialization format is not self describing, as noted in the
// format comments, this function also requires the transactions that spend the
// txouts.
func deserializeSpendJournalEntry(serialized []byte, txns []*wire.MsgTx) ([]SpentTxOut, error) {
// Calculate the total number of stxos.
var numStxos int
for _, tx := range txns {
numStxos += len(tx.TxIn)
}
// When a block has no spent txouts there is nothing to serialize.
if len(serialized) == 0 {
// Ensure the block actually has no stxos. This should never
// happen unless there is database corruption or an empty entry
// erroneously made its way into the database.
if numStxos != 0 {
return nil, AssertError(fmt.Sprintf("mismatched spend "+
"journal serialization - no serialization for "+
"expected %d stxos", numStxos))
}
return nil, nil
}
// Loop backwards through all transactions so everything is read in
// reverse order to match the serialization order.
stxoIdx := numStxos - 1
offset := 0
stxos := make([]SpentTxOut, numStxos)
for txIdx := len(txns) - 1; txIdx > -1; txIdx-- {
tx := txns[txIdx]
// Loop backwards through all of the transaction inputs and read
// the associated stxo.
for txInIdx := len(tx.TxIn) - 1; txInIdx > -1; txInIdx-- {
txIn := tx.TxIn[txInIdx]
stxo := &stxos[stxoIdx]
stxoIdx--
n, err := decodeSpentTxOut(serialized[offset:], stxo)
offset += n
if err != nil {
return nil, errDeserialize(fmt.Sprintf("unable "+
"to decode stxo for %v: %v",
txIn.PreviousOutPoint, err))
}
}
}
return stxos, nil
}
// serializeSpendJournalEntry serializes all of the passed spent txouts into a
// single byte slice according to the format described in detail above.
func serializeSpendJournalEntry(stxos []SpentTxOut) []byte {
if len(stxos) == 0 {
return nil
}
// Calculate the size needed to serialize the entire journal entry.
var size int
for i := range stxos {
size += spentTxOutSerializeSize(&stxos[i])
}
serialized := make([]byte, size)
// Serialize each individual stxo directly into the slice in reverse
// order one after the other.
var offset int
for i := len(stxos) - 1; i > -1; i-- {
offset += putSpentTxOut(serialized[offset:], &stxos[i])
}
return serialized
}
// dbFetchSpendJournalEntry fetches the spend journal entry for the passed block
// and deserializes it into a slice of spent txout entries.
//
// NOTE: Legacy entries will not have the coinbase flag or height set unless it
// was the final output spend in the containing transaction. It is up to the
// caller to handle this properly by looking the information up in the utxo set.
func dbFetchSpendJournalEntry(dbTx database.Tx, block *bsvutil.Block) ([]SpentTxOut, error) {
// Exclude the coinbase transaction since it can't spend anything.
spendBucket := dbTx.Metadata().Bucket(spendJournalBucketName)
serialized := spendBucket.Get(block.Hash()[:])
blockTxns := block.MsgBlock().Transactions[1:]
stxos, err := deserializeSpendJournalEntry(serialized, blockTxns)
if err != nil {
// Ensure any deserialization errors are returned as database
// corruption errors.
if isDeserializeErr(err) {
return nil, database.Error{
ErrorCode: database.ErrCorruption,
Description: fmt.Sprintf("corrupt spend "+
"information for %v: %v", block.Hash(),
err),
}
}
return nil, err
}
return stxos, nil
}
// dbPutSpendJournalEntry uses an existing database transaction to update the
// spend journal entry for the given block hash using the provided slice of
// spent txouts. The spent txouts slice must contain an entry for every txout
// the transactions in the block spend in the order they are spent.
func dbPutSpendJournalEntry(dbTx database.Tx, blockHash *chainhash.Hash, stxos []SpentTxOut) error {
spendBucket := dbTx.Metadata().Bucket(spendJournalBucketName)
serialized := serializeSpendJournalEntry(stxos)
return spendBucket.Put(blockHash[:], serialized)
}
// dbRemoveSpendJournalEntry uses an existing database transaction to remove the
// spend journal entry for the passed block hash.
func dbRemoveSpendJournalEntry(dbTx database.Tx, blockHash *chainhash.Hash) error {
spendBucket := dbTx.Metadata().Bucket(spendJournalBucketName)
return spendBucket.Delete(blockHash[:])
}
// -----------------------------------------------------------------------------
// The unspent transaction output (utxo) set consists of an entry for each
// unspent output using a format that is optimized to reduce space using domain
// specific compression algorithms. This format is a slightly modified version
// of the format used in Bitcoin Core.
//
// Each entry is keyed by an outpoint as specified below. It is important to
// note that the key encoding uses a VLQ, which employs an MSB encoding so
// iteration of utxos when doing byte-wise comparisons will produce them in
// order.
//
// The serialized key format is:
// <hash><output index>
//
// Field Type Size
// hash chainhash.Hash chainhash.HashSize
// output index VLQ variable
//
// The serialized value format is:
//
// <header code><compressed txout>
//
// Field Type Size
// header code VLQ variable
// compressed txout
// compressed amount VLQ variable
// compressed script []byte variable
//
// The serialized header code format is:
// bit 0 - containing transaction is a coinbase
// bits 1-x - height of the block that contains the unspent txout
//
// Example 1:
// From tx in main blockchain:
// Blk 1, 0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098:0
//
// 03320496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52
// <><------------------------------------------------------------------>
// | |
// header code compressed txout
//
// - header code: 0x03 (coinbase, height 1)
// - compressed txout:
// - 0x32: VLQ-encoded compressed amount for 5000000000 (50 BSV)
// - 0x04: special script type pay-to-pubkey
// - 0x96...52: x-coordinate of the pubkey
//
// Example 2:
// From tx in main blockchain:
// Blk 113931, 4a16969aa4764dd7507fc1de7f0baa4850a246de90c45e59a3207f9a26b5036f:2
//
// 8cf316800900b8025be1b3efc63b0ad48e7f9f10e87544528d58
// <----><------------------------------------------>
// | |
// header code compressed txout
//
// - header code: 0x8cf316 (not coinbase, height 113931)
// - compressed txout:
// - 0x8009: VLQ-encoded compressed amount for 15000000 (0.15 BSV)
// - 0x00: special script type pay-to-pubkey-hash
// - 0xb8...58: pubkey hash
//
// Example 3:
// From tx in main blockchain:
// Blk 338156, 1b02d1c8cfef60a189017b9a420c682cf4a0028175f2f563209e4ff61c8c3620:22
//
// a8a2588ba5b9e763011dd46a006572d820e448e12d2bbb38640bc718e6
// <----><-------------------------------------------------->
// | |
// header code compressed txout
//
// - header code: 0xa8a258 (not coinbase, height 338156)
// - compressed txout:
// - 0x8ba5b9e763: VLQ-encoded compressed amount for 366875659 (3.66875659 BSV)
// - 0x01: special script type pay-to-script-hash
// - 0x1d...e6: script hash
// -----------------------------------------------------------------------------
// maxUint32VLQSerializeSize is the maximum number of bytes a max uint32 takes
// to serialize as a VLQ.
var maxUint32VLQSerializeSize = serializeSizeVLQ(1<<32 - 1)
// outpointKeyPool defines a concurrent safe free list of byte slices used to
// provide temporary buffers for outpoint database keys.
var outpointKeyPool = sync.Pool{
New: func() interface{} {
b := make([]byte, chainhash.HashSize+maxUint32VLQSerializeSize)
return &b // Pointer to slice to avoid boxing alloc.
},
}
// outpointKey returns a key suitable for use as a database key in the utxo set
// while making use of a free list. A new buffer is allocated if there are not
// already any available on the free list. The returned byte slice should be
// returned to the free list by using the recycleOutpointKey function when the
// caller is done with it _unless_ the slice will need to live for longer than
// the caller can calculate such as when used to write to the database.
func outpointKey(outpoint wire.OutPoint) *[]byte {
// A VLQ employs an MSB encoding, so they are useful not only to reduce
// the amount of storage space, but also so iteration of utxos when
// doing byte-wise comparisons will produce them in order.
key := outpointKeyPool.Get().(*[]byte)
idx := uint64(outpoint.Index)
*key = (*key)[:chainhash.HashSize+serializeSizeVLQ(idx)]
copy(*key, outpoint.Hash[:])
putVLQ((*key)[chainhash.HashSize:], idx)
return key
}
// DeserializeOutpointKey takes in a Utxo database key and deserializes
// it into an outpoint.
func DeserializeOutpointKey(key []byte) *wire.OutPoint {
h, _ := chainhash.NewHash(key[:chainhash.HashSize])
idx, _ := deserializeVLQ(key[chainhash.HashSize:])
return wire.NewOutPoint(h, uint32(idx))
}
// recycleOutpointKey puts the provided byte slice, which should have been
// obtained via the outpointKey function, back on the free list.
func recycleOutpointKey(key *[]byte) {
outpointKeyPool.Put(key)
}
// utxoEntryHeaderCode returns the calculated header code to be used when
// serializing the provided utxo entry.
func utxoEntryHeaderCode(entry *UtxoEntry) (uint64, error) {
if entry.IsSpent() {
return 0, AssertError("attempt to serialize spent utxo header")
}
// As described in the serialization format comments, the header code
// encodes the height shifted over one bit and the coinbase flag in the
// lowest bit.
headerCode := uint64(entry.BlockHeight()) << 1
if entry.IsCoinBase() {
headerCode |= 0x01
}
return headerCode, nil
}
// serializeUtxoEntry returns the entry serialized to a format that is suitable
// for long-term storage. The format is described in detail above.
func serializeUtxoEntry(entry *UtxoEntry) ([]byte, error) {
// Spent outputs have no serialization.
if entry.IsSpent() {
return nil, nil
}
// Encode the header code.
headerCode, err := utxoEntryHeaderCode(entry)
if err != nil {
return nil, err
}
// Calculate the size needed to serialize the entry.
size := serializeSizeVLQ(headerCode) +
compressedTxOutSize(uint64(entry.Amount()), entry.PkScript())
// Serialize the header code followed by the compressed unspent
// transaction output.
serialized := make([]byte, size)
offset := putVLQ(serialized, headerCode)
putCompressedTxOut(serialized[offset:], uint64(entry.Amount()),
entry.PkScript())
return serialized, nil
}
// DeserializeUtxoEntry decodes a utxo entry from the passed serialized byte
// slice into a new UtxoEntry using a format that is suitable for long-term
// storage. The format is described in detail above.
func DeserializeUtxoEntry(serialized []byte) (*UtxoEntry, error) {
// Deserialize the header code.
code, offset := deserializeVLQ(serialized)
if offset >= len(serialized) {
return nil, errDeserialize("unexpected end of data after header")
}
// Decode the header code.
//
// Bit 0 indicates whether the containing transaction is a coinbase.
// Bits 1-x encode height of containing transaction.
isCoinBase := code&0x01 != 0
blockHeight := int32(code >> 1)
// Decode the compressed unspent transaction output.
amount, pkScript, _, err := decodeCompressedTxOut(serialized[offset:])
if err != nil {
return nil, errDeserialize(fmt.Sprintf("unable to decode "+
"utxo: %v", err))
}
entry := &UtxoEntry{
amount: int64(amount),
pkScript: pkScript,
blockHeight: blockHeight,
packedFlags: 0,
}
if isCoinBase {
entry.packedFlags |= tfCoinBase
}
return entry, nil
}
// dbFetchUtxoEntryByHash attempts to find and fetch a utxo for the given hash.
// It uses a cursor and seek to try and do this as efficiently as possible.
//
// When there are no entries for the provided hash, nil will be returned for the
// both the entry and the error.
func dbFetchUtxoEntryByHash(dbTx database.Tx, hash *chainhash.Hash) (*UtxoEntry, error) {
// Attempt to find an entry by seeking for the hash along with a zero
// index. Due to the fact the keys are serialized as <hash><index>,
// where the index uses an MSB encoding, if there are any entries for
// the hash at all, one will be found.
cursor := dbTx.Metadata().Bucket(utxoSetBucketName).Cursor()
key := outpointKey(wire.OutPoint{Hash: *hash, Index: 0})
ok := cursor.Seek(*key)
recycleOutpointKey(key)
if !ok {
return nil, nil
}
// An entry was found, but it could just be an entry with the next
// highest hash after the requested one, so make sure the hashes
// actually match.
cursorKey := cursor.Key()
if len(cursorKey) < chainhash.HashSize {
return nil, nil
}
if !bytes.Equal(hash[:], cursorKey[:chainhash.HashSize]) {
return nil, nil
}
return DeserializeUtxoEntry(cursor.Value())
}
// dbFetchUtxoEntry uses an existing database transaction to fetch the specified
// transaction output from the utxo set.
//
// When there is no entry for the provided output, nil will be returned for both
// the entry and the error.
func dbFetchUtxoEntry(dbTx database.Tx, outpoint wire.OutPoint) (*UtxoEntry, error) {
// Fetch the unspent transaction output information for the passed
// transaction output. Return now when there is no entry.
key := outpointKey(outpoint)
utxoBucket := dbTx.Metadata().Bucket(utxoSetBucketName)
serializedUtxo := utxoBucket.Get(*key)
recycleOutpointKey(key)
if serializedUtxo == nil {
return nil, nil
}
// A non-nil zero-length entry means there is an entry in the database
// for a spent transaction output which should never be the case.
if len(serializedUtxo) == 0 {
return nil, AssertError(fmt.Sprintf("database contains entry "+
"for spent tx output %v", outpoint))
}
// Deserialize the utxo entry and return it.
entry, err := DeserializeUtxoEntry(serializedUtxo)
if err != nil {
// Ensure any deserialization errors are returned as database
// corruption errors.
if isDeserializeErr(err) {
return nil, database.Error{
ErrorCode: database.ErrCorruption,
Description: fmt.Sprintf("corrupt utxo entry "+
"for %v: %v", outpoint, err),
}
}
return nil, err
}
return entry, nil
}
// dbPutUtxoEntries uses an existing database transaction to update the utxo
// entries in the database.
func dbPutUtxoEntries(dbTx database.Tx, entries map[wire.OutPoint]*UtxoEntry) error {
utxoBucket := dbTx.Metadata().Bucket(utxoSetBucketName)
for outpoint, entry := range entries {
if entry == nil || entry.IsSpent() {
return AssertError("trying to store nil or spent entry")
}
// Serialize and store the utxo entry.
serialized, err := serializeUtxoEntry(entry)
if err != nil {
return err
}
// NOTE: The key is intentionally not recycled here since the
// database interface contract prohibits modifications. It will
// be garbage collected normally when the database is done with
// it.
key := outpointKey(outpoint)
if err := utxoBucket.Put(*key, serialized); err != nil {
return err
}
}
return nil
}
// dbDeleteUtxoEntries uses an existing database transaction to delete the utxo
// entries from the database.
func dbDeleteUtxoEntries(dbTx database.Tx, outpoints []wire.OutPoint) error {
utxoBucket := dbTx.Metadata().Bucket(utxoSetBucketName)
for _, outpoint := range outpoints {
key := outpointKey(outpoint)
err := utxoBucket.Delete(*key)
recycleOutpointKey(key)
if err != nil {
return err
}
}
return nil
}
// -----------------------------------------------------------------------------
// The block index consists of two buckets with an entry for every block in the
// main chain. One bucket is for the hash to height mapping and the other is
// for the height to hash mapping.
//
// The serialized format for values in the hash to height bucket is:
// <height>
//
// Field Type Size
// height uint32 4 bytes
//
// The serialized format for values in the height to hash bucket is:
// <hash>
//
// Field Type Size
// hash chainhash.Hash chainhash.HashSize
// -----------------------------------------------------------------------------
// dbPutBlockIndex uses an existing database transaction to update or add the
// block index entries for the hash to height and height to hash mappings for
// the provided values.
func dbPutBlockIndex(dbTx database.Tx, hash *chainhash.Hash, height int32) error {
// Serialize the height for use in the index entries.
var serializedHeight [4]byte
byteOrder.PutUint32(serializedHeight[:], uint32(height))
// Add the block hash to height mapping to the index.
meta := dbTx.Metadata()
hashIndex := meta.Bucket(hashIndexBucketName)
if err := hashIndex.Put(hash[:], serializedHeight[:]); err != nil {
return err
}
// Add the block height to hash mapping to the index.
heightIndex := meta.Bucket(heightIndexBucketName)
return heightIndex.Put(serializedHeight[:], hash[:])
}
// dbRemoveBlockIndex uses an existing database transaction remove block index
// entries from the hash to height and height to hash mappings for the provided
// values.
func dbRemoveBlockIndex(dbTx database.Tx, hash *chainhash.Hash, height int32) error {
// Remove the block hash to height mapping.
meta := dbTx.Metadata()
hashIndex := meta.Bucket(hashIndexBucketName)
if err := hashIndex.Delete(hash[:]); err != nil {
return err
}
// Remove the block height to hash mapping.
var serializedHeight [4]byte
byteOrder.PutUint32(serializedHeight[:], uint32(height))
heightIndex := meta.Bucket(heightIndexBucketName)
return heightIndex.Delete(serializedHeight[:])
}
// dbFetchHeightByHash uses an existing database transaction to retrieve the
// height for the provided hash from the index.
func dbFetchHeightByHash(dbTx database.Tx, hash *chainhash.Hash) (int32, error) {
meta := dbTx.Metadata()
hashIndex := meta.Bucket(hashIndexBucketName)
serializedHeight := hashIndex.Get(hash[:])
if serializedHeight == nil {
str := fmt.Sprintf("block %s is not in the main chain", hash)
return 0, errNotInMainChain(str)
}
return int32(byteOrder.Uint32(serializedHeight)), nil
}
// dbFetchHashByHeight uses an existing database transaction to retrieve the
// hash for the provided height from the index.
func dbFetchHashByHeight(dbTx database.Tx, height int32) (*chainhash.Hash, error) {
var serializedHeight [4]byte
byteOrder.PutUint32(serializedHeight[:], uint32(height))
meta := dbTx.Metadata()
heightIndex := meta.Bucket(heightIndexBucketName)
hashBytes := heightIndex.Get(serializedHeight[:])
if hashBytes == nil {
str := fmt.Sprintf("no block at height %d exists", height)
return nil, errNotInMainChain(str)
}
var hash chainhash.Hash
copy(hash[:], hashBytes)
return &hash, nil
}
// -----------------------------------------------------------------------------
// The best chain state consists of the best block hash and height, the total
// number of transactions up to and including those in the best block, and the
// accumulated work sum up to and including the best block.
//
// The serialized format is:
//
// <block hash><block height><total txns><work sum length><work sum>
//
// Field Type Size
// block hash chainhash.Hash chainhash.HashSize
// block height uint32 4 bytes
// total txns uint64 8 bytes
// work sum length uint32 4 bytes
// work sum big.Int work sum length
// -----------------------------------------------------------------------------
// bestChainState represents the data to be stored the database for the current
// best chain state.
type bestChainState struct {
hash chainhash.Hash
height uint32
totalTxns uint64
workSum *big.Int
}
// serializeBestChainState returns the serialization of the passed block best
// chain state. This is data to be stored in the chain state bucket.
func serializeBestChainState(state bestChainState) []byte {
// Calculate the full size needed to serialize the chain state.
workSumBytes := state.workSum.Bytes()
workSumBytesLen := uint32(len(workSumBytes))
serializedLen := chainhash.HashSize + 4 + 8 + 4 + workSumBytesLen
// Serialize the chain state.
serializedData := make([]byte, serializedLen)
copy(serializedData[0:chainhash.HashSize], state.hash[:])
offset := uint32(chainhash.HashSize)
byteOrder.PutUint32(serializedData[offset:], state.height)
offset += 4
byteOrder.PutUint64(serializedData[offset:], state.totalTxns)
offset += 8
byteOrder.PutUint32(serializedData[offset:], workSumBytesLen)
offset += 4
copy(serializedData[offset:], workSumBytes)
return serializedData[:]
}
// deserializeBestChainState deserializes the passed serialized best chain
// state. This is data stored in the chain state bucket and is updated after
// every block is connected or disconnected form the main chain.
// block.
func deserializeBestChainState(serializedData []byte) (bestChainState, error) {
// Ensure the serialized data has enough bytes to properly deserialize
// the hash, height, total transactions, and work sum length.
if len(serializedData) < chainhash.HashSize+16 {
return bestChainState{}, database.Error{
ErrorCode: database.ErrCorruption,
Description: "corrupt best chain state",
}
}
state := bestChainState{}
copy(state.hash[:], serializedData[0:chainhash.HashSize])
offset := uint32(chainhash.HashSize)
state.height = byteOrder.Uint32(serializedData[offset : offset+4])
offset += 4
state.totalTxns = byteOrder.Uint64(serializedData[offset : offset+8])
offset += 8
workSumBytesLen := byteOrder.Uint32(serializedData[offset : offset+4])
offset += 4
// Ensure the serialized data has enough bytes to deserialize the work
// sum.
if uint32(len(serializedData[offset:])) < workSumBytesLen {
return bestChainState{}, database.Error{
ErrorCode: database.ErrCorruption,
Description: "corrupt best chain state",
}
}
workSumBytes := serializedData[offset : offset+workSumBytesLen]
state.workSum = new(big.Int).SetBytes(workSumBytes)
return state, nil
}