forked from cloudflare/circl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fp2.go
222 lines (195 loc) · 6.7 KB
/
fp2.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Code generated by go generate; DO NOT EDIT.
// This file was generated by robots.
package p751
import (
"github.com/linckode/circl/dh/sidh/internal/common"
)
// Montgomery multiplication. Input values must be already
// in Montgomery domain.
func mulP(dest, lhs, rhs *common.Fp) {
var ab common.FpX2
mulP751(&ab, lhs, rhs) // = a*b*R*R
rdcP751(dest, &ab) // = a*b*R mod p
}
// Set dest = x^((p-3)/4). If x is square, this is 1/sqrt(x).
// Uses variation of sliding-window algorithm from with window size
// of 5 and least to most significant bit sliding (left-to-right)
// See HAC 14.85 for general description.
//
// Allowed to overlap x with dest.
// All values in Montgomery domains
// Set dest = x^(2^k), for k >= 1, by repeated squarings.
func p34(dest, x *common.Fp) {
var lookup [16]common.Fp
// This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy)
// multiplications.
powStrategy := []uint8{5, 7, 6, 2, 10, 4, 6, 9, 8, 5, 9, 4, 7, 5, 5, 4, 8, 3, 9, 5, 5, 4, 10, 4, 6, 6, 6, 5, 8, 9, 3, 4, 9, 4, 5, 6, 6, 2, 9, 4, 5, 5, 5, 7, 7, 9, 4, 6, 4, 8, 5, 8, 6, 6, 2, 9, 7, 4, 8, 8, 8, 4, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2}
mulStrategy := []uint8{15, 11, 10, 0, 15, 3, 3, 3, 4, 4, 9, 7, 11, 11, 5, 3, 12, 2, 10, 8, 5, 2, 8, 3, 5, 4, 11, 4, 0, 9, 2, 1, 12, 7, 5, 14, 15, 0, 14, 5, 6, 4, 5, 13, 6, 9, 7, 15, 1, 14, 11, 15, 12, 5, 0, 10, 9, 7, 7, 10, 14, 6, 11, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 1}
initialMul := uint8(13)
// Precompute lookup table of odd multiples of x for window
// size k=5.
var xx common.Fp
mulP(&xx, x, x)
lookup[0] = *x
for i := 1; i < 16; i++ {
mulP(&lookup[i], &lookup[i-1], &xx)
}
// Now lookup = {x, x^3, x^5, ... }
// so that lookup[i] = x^{2*i + 1}
// so that lookup[k/2] = x^k, for odd k
*dest = lookup[initialMul]
for i := uint8(0); i < uint8(len(powStrategy)); i++ {
mulP(dest, dest, dest)
for j := uint8(1); j < powStrategy[i]; j++ {
mulP(dest, dest, dest)
}
mulP(dest, dest, &lookup[mulStrategy[i]])
}
}
func add(dest, lhs, rhs *common.Fp2) {
addP751(&dest.A, &lhs.A, &rhs.A)
addP751(&dest.B, &lhs.B, &rhs.B)
}
func sub(dest, lhs, rhs *common.Fp2) {
subP751(&dest.A, &lhs.A, &rhs.A)
subP751(&dest.B, &lhs.B, &rhs.B)
}
func mul(dest, lhs, rhs *common.Fp2) {
var bMinA, cMinD common.Fp
var ac, bd common.FpX2
var adPlusBc common.FpX2
var acMinBd common.FpX2
// Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b).
//
// (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i
//
// Use Karatsuba's trick: note that
//
// (b - a)*(c - d) = (b*c + a*d) - a*c - b*d
//
// so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d.
subP751(&bMinA, &lhs.B, &lhs.A) // = (b-a)*R
subP751(&cMinD, &rhs.A, &rhs.B) // = (c-d)*R
mulP751(&ac, &lhs.A, &rhs.A) // = a*c*R*R
mulP751(&bd, &lhs.B, &rhs.B) // = b*d*R*R
mulP751(&adPlusBc, &bMinA, &cMinD) // = (b-a)*(c-d)*R*R
adlP751(&adPlusBc, &adPlusBc, &ac) // = ((b-a)*(c-d) + a*c)*R*R
adlP751(&adPlusBc, &adPlusBc, &bd) // = ((b-a)*(c-d) + a*c + b*d)*R*R
rdcP751(&dest.B, &adPlusBc) // = (a*d + b*c)*R mod p
sulP751(&acMinBd, &ac, &bd) // = (a*c - b*d)*R*R
rdcP751(&dest.A, &acMinBd) // = (a*c - b*d)*R mod p
}
// Set dest = 1/x
//
// Allowed to overlap dest with x.
//
// Returns dest to allow chaining operations.
func inv(dest, x *common.Fp2) {
var e1, e2 common.FpX2
var f1, f2 common.Fp
// We want to compute
//
// 1 1 (a - bi) (a - bi)
// -------- = -------- -------- = -----------
// (a + bi) (a + bi) (a - bi) (a^2 + b^2)
//
// Letting c = 1/(a^2 + b^2), this is
//
// 1/(a+bi) = a*c - b*ci.
mulP751(&e1, &x.A, &x.A) // = a*a*R*R
mulP751(&e2, &x.B, &x.B) // = b*b*R*R
adlP751(&e1, &e1, &e2) // = (a^2 + b^2)*R*R
rdcP751(&f1, &e1) // = (a^2 + b^2)*R mod p
// Now f1 = a^2 + b^2
mulP(&f2, &f1, &f1)
p34(&f2, &f2)
mulP(&f2, &f2, &f2)
mulP(&f2, &f2, &f1)
mulP751(&e1, &x.A, &f2)
rdcP751(&dest.A, &e1)
subP751(&f1, &common.Fp{}, &x.B)
mulP751(&e1, &f1, &f2)
rdcP751(&dest.B, &e1)
}
func sqr(dest, x *common.Fp2) {
var a2, aPlusB, aMinusB common.Fp
var a2MinB2, ab2 common.FpX2
a := &x.A
b := &x.B
// (a + bi)*(a + bi) = (a^2 - b^2) + 2abi.
addP751(&a2, a, a) // = a*R + a*R = 2*a*R
addP751(&aPlusB, a, b) // = a*R + b*R = (a+b)*R
subP751(&aMinusB, a, b) // = a*R - b*R = (a-b)*R
mulP751(&a2MinB2, &aPlusB, &aMinusB) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R
mulP751(&ab2, &a2, b) // = 2*a*b*R*R
rdcP751(&dest.A, &a2MinB2) // = (a^2 - b^2)*R mod p
rdcP751(&dest.B, &ab2) // = 2*a*b*R mod p
}
// In case choice == 1, performs following swap in constant time:
//
// xPx <-> xQx
// xPz <-> xQz
//
// Otherwise returns xPx, xPz, xQx, xQz unchanged
func cswap(xPx, xPz, xQx, xQz *common.Fp2, choice uint8) {
cswapP751(&xPx.A, &xQx.A, choice)
cswapP751(&xPx.B, &xQx.B, choice)
cswapP751(&xPz.A, &xQz.A, choice)
cswapP751(&xPz.B, &xQz.B, choice)
}
// In case choice == 1, performs following moves in constant time:
//
// xPx <- xQx
// xPz <- xQz
//
// Otherwise returns xPx, xPz, xQx, xQz unchanged
func cmov(xPx, xPz, xQx, xQz *common.Fp2, choice uint8) {
cmovP751(&xPx.A, &xQx.A, choice)
cmovP751(&xPx.B, &xQx.B, choice)
cmovP751(&xPz.A, &xQz.A, choice)
cmovP751(&xPz.B, &xQz.B, choice)
}
func isZero(x *common.Fp2) uint8 {
r64 := uint64(0)
for i := 0; i < FpWords; i++ {
r64 |= x.A[i] | x.B[i]
}
r := uint8(0)
for i := uint64(0); i < 64; i++ {
r |= uint8((r64 >> i) & 0x1)
}
return 1 - r
}
// Converts in.A and in.B to Montgomery domain and stores
// in 'out'
// out.A = in.A * R mod p
// out.B = in.B * R mod p
// Performs v = v*R^2*R^(-1) mod p, for both in.A and in.B
func ToMontgomery(out, in *common.Fp2) {
var aRR common.FpX2
// a*R*R
mulP751(&aRR, &in.A, &P751R2)
// a*R mod p
rdcP751(&out.A, &aRR)
mulP751(&aRR, &in.B, &P751R2)
rdcP751(&out.B, &aRR)
}
// Converts in.A and in.B from Montgomery domain and stores
// in 'out'
// out.A = in.A mod p
// out.B = in.B mod p
//
// After returning from the call 'in' is not modified.
func FromMontgomery(out, in *common.Fp2) {
var aR common.FpX2
// convert from montgomery domain
copy(aR[:], in.A[:])
rdcP751(&out.A, &aR) // = a mod p in [0, 2p)
modP751(&out.A) // = a mod p in [0, p)
for i := range aR {
aR[i] = 0
}
copy(aR[:], in.B[:])
rdcP751(&out.B, &aR)
modP751(&out.B)
}