You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have some questions about the GenerateAugmentationParameters layer. In the following FlowNet2.prototxt, it seems that this layer can generate more augmentation parameters than DataAugmentation layer if the aug_.mode() == "add", such as the brightness, gamma, constract and color, however, I think they can also be generated in the DataAugmentation layer, so why not use the DataAugmentation layer to generate all the parameters?
Besides in the FlowNetC.prototxt, I found the spatial transforming paramters (rotate, translate, zoom )are both generated by the two layers. If the aug_.mode() == "add", it seems there are two different groups of spatial transforming paramters in the output blob (that is blob8 in the FlowNetC.prototxt).
Hi, the DataAugmentation layer generates parameters from scratch and directly augments data. The GenerateAugmentationParameters layer only generates parameters. It can additionally take existing parameters and modify them by adding transformations.
I have some questions about the GenerateAugmentationParameters layer. In the following FlowNet2.prototxt, it seems that this layer can generate more augmentation parameters than DataAugmentation layer if the aug_.mode() == "add", such as the brightness, gamma, constract and color, however, I think they can also be generated in the DataAugmentation layer, so why not use the DataAugmentation layer to generate all the parameters?
Besides in the FlowNetC.prototxt, I found the spatial transforming paramters (rotate, translate, zoom )are both generated by the two layers. If the aug_.mode() == "add", it seems there are two different groups of spatial transforming paramters in the output blob (that is blob8 in the FlowNetC.prototxt).
FlowNet2.prototxt
layer {
name: "img0s_aug"
type: "DataAugmentation"
bottom: "blob13"
top: "img0_aug"
top: "blob16"
augmentation_param {
max_multiplier: 1
augment_during_test: false
recompute_mean: 1000
mean_per_pixel: false
translate {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 0.2
prob: 1.0
}
lmult_pow {
rand_type: "uniform_bernoulli"
exp: true
mean: -0.2
spread: 0.4
prob: 1.0
}
lmult_mult {
rand_type: "uniform_bernoulli"
exp: true
mean: 0.0
spread: 0.4
prob: 1.0
}
lmult_add {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 0.03
prob: 1.0
}
sat_pow {
rand_type: "uniform_bernoulli"
exp: true
mean: 0
spread: 0.4
prob: 1.0
}
sat_mult {
rand_type: "uniform_bernoulli"
exp: true
mean: -0.3
spread: 0.5
prob: 1.0
}
sat_add {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 0.03
prob: 1.0
}
col_pow {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.4
prob: 1.0
}
col_mult {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.2
prob: 1.0
}
col_add {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.02
prob: 1.0
}
ladd_pow {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.4
prob: 1.0
}
ladd_mult {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0.0
spread: 0.4
prob: 1.0
}
ladd_add {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.04
prob: 1.0
}
col_rotate {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 1
prob: 1.0
}
crop_width: 448
crop_height: 320
chromatic_eigvec: 0.51
chromatic_eigvec: 0.56
chromatic_eigvec: 0.65
chromatic_eigvec: 0.79
chromatic_eigvec: 0.01
chromatic_eigvec: -0.62
chromatic_eigvec: 0.35
chromatic_eigvec: -0.83
chromatic_eigvec: 0.44
noise {
rand_type: "uniform_bernoulli"
exp: false
mean: 0.03
spread: 0.03
prob: 1.0
}
}
}
layer {
name: "aug_params1"
type: "GenerateAugmentationParameters"
bottom: "blob16"
bottom: "blob13"
bottom: "img0_aug"
top: "blob17"
augmentation_param {
augment_during_test: false
gamma {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.02
prob: 1.0
}
brightness {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.02
prob: 1.0
}
contrast {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.02
prob: 1.0
}
color {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.02
prob: 1.0
}
}
coeff_schedule_param {
half_life: 50000
initial_coeff: 0.5
final_coeff: 1
}
}
FlowNetC.prototxt
layer {
name: "img0s_aug"
type: "DataAugmentation"
bottom: "blob4"
top: "img0_aug"
top: "blob7"
propagate_down: false
augmentation_param {
max_multiplier: 1
augment_during_test: false
recompute_mean: 1000
mean_per_pixel: false
translate {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 0.4
prob: 1.0
}
rotate {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 0.4
prob: 1.0
}
zoom {
rand_type: "uniform_bernoulli"
exp: true
mean: 0.2
spread: 0.4
prob: 1.0
}
squeeze {
rand_type: "uniform_bernoulli"
exp: true
mean: 0
spread: 0.3
prob: 1.0
}
lmult_pow {
rand_type: "uniform_bernoulli"
exp: true
mean: -0.2
spread: 0.4
prob: 1.0
}
lmult_mult {
rand_type: "uniform_bernoulli"
exp: true
mean: 0.0
spread: 0.4
prob: 1.0
}
lmult_add {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 0.03
prob: 1.0
}
sat_pow {
rand_type: "uniform_bernoulli"
exp: true
mean: 0
spread: 0.4
prob: 1.0
}
sat_mult {
rand_type: "uniform_bernoulli"
exp: true
mean: -0.3
spread: 0.5
prob: 1.0
}
sat_add {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 0.03
prob: 1.0
}
col_pow {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.4
prob: 1.0
}
col_mult {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.2
prob: 1.0
}
col_add {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.02
prob: 1.0
}
ladd_pow {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.4
prob: 1.0
}
ladd_mult {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0.0
spread: 0.4
prob: 1.0
}
ladd_add {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.04
prob: 1.0
}
col_rotate {
rand_type: "uniform_bernoulli"
exp: false
mean: 0
spread: 1
prob: 1.0
}
crop_width: 448
crop_height: 320
chromatic_eigvec: 0.51
chromatic_eigvec: 0.56
chromatic_eigvec: 0.65
chromatic_eigvec: 0.79
chromatic_eigvec: 0.01
chromatic_eigvec: -0.62
chromatic_eigvec: 0.35
chromatic_eigvec: -0.83
chromatic_eigvec: 0.44
noise {
rand_type: "uniform_bernoulli"
exp: false
mean: 0.03
spread: 0.03
prob: 1.0
}
}
}
layer {
name: "aug_params1"
type: "GenerateAugmentationParameters"
bottom: "blob7"
bottom: "blob4"
bottom: "img0_aug"
top: "blob8"
augmentation_param {
augment_during_test: false
translate {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.03
prob: 1.0
}
rotate {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.03
prob: 1.0
}
zoom {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.03
prob: 1.0
}
gamma {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.02
prob: 1.0
}
brightness {
rand_type: "gaussian_bernoulli"
exp: false
mean: 0
spread: 0.02
prob: 1.0
}
contrast {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.02
prob: 1.0
}
color {
rand_type: "gaussian_bernoulli"
exp: true
mean: 0
spread: 0.02
prob: 1.0
}
}
coeff_schedule_param {
half_life: 50000
initial_coeff: 0.5
final_coeff: 1
}
}
The text was updated successfully, but these errors were encountered: