-
Notifications
You must be signed in to change notification settings - Fork 207
/
residual_fsq.py
324 lines (217 loc) · 9.51 KB
/
residual_fsq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import random
from math import log2
from functools import partial
from typing import List
import torch
from torch import nn
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from torch.amp import autocast
import torch.distributed as dist
from vector_quantize_pytorch.finite_scalar_quantization import FSQ
from einops import rearrange, repeat, reduce, pack, unpack
from einx import get_at
# helper functions
def exists(val):
return val is not None
def first(l):
return l[0]
def default(val, d):
return val if exists(val) else d
def round_up_multiple(num, mult):
return ceil(num / mult) * mult
# distributed helpers
def is_distributed():
return dist.is_initialized() and dist.get_world_size() > 1
def get_maybe_sync_seed(device, max_size = 10_000):
rand_int = torch.randint(0, max_size, (), device = device)
if is_distributed():
dist.all_reduce(rand_int)
return rand_int.item()
# main class
class ResidualFSQ(Module):
""" Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf """
def __init__(
self,
*,
levels: List[int],
num_quantizers,
dim = None,
is_channel_first = False,
quantize_dropout = False,
quantize_dropout_cutoff_index = 0,
quantize_dropout_multiple_of = 1,
**kwargs
):
super().__init__()
codebook_dim = len(levels)
dim = default(dim, codebook_dim)
requires_projection = codebook_dim != dim
self.project_in = nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
self.project_out = nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
self.has_projections = requires_projection
self.is_channel_first = is_channel_first
self.num_quantizers = num_quantizers
self.levels = levels
self.layers = nn.ModuleList([])
levels_tensor = torch.Tensor(levels)
scales = []
for ind in range(num_quantizers):
scales.append((levels_tensor - 1) ** -ind)
fsq = FSQ(
levels = levels,
dim = codebook_dim,
**kwargs
)
self.layers.append(fsq)
assert all([not fsq.has_projections for fsq in self.layers])
self.codebook_size = self.layers[0].codebook_size
self.register_buffer('scales', torch.stack(scales), persistent = False)
self.quantize_dropout = quantize_dropout and num_quantizers > 1
assert quantize_dropout_cutoff_index >= 0
self.quantize_dropout_cutoff_index = quantize_dropout_cutoff_index
self.quantize_dropout_multiple_of = quantize_dropout_multiple_of # encodec paper proposes structured dropout, believe this was set to 4
@property
def codebooks(self):
codebooks = [layer.implicit_codebook for layer in self.layers]
codebooks = torch.stack(codebooks, dim = 0)
return codebooks
def get_codes_from_indices(self, indices):
batch, quantize_dim = indices.shape[0], indices.shape[-1]
# may also receive indices in the shape of 'b h w q' (accept_image_fmap)
indices, ps = pack([indices], 'b * q')
# because of quantize dropout, one can pass in indices that are coarse
# and the network should be able to reconstruct
if quantize_dim < self.num_quantizers:
assert self.quantize_dropout > 0., 'quantize dropout must be greater than 0 if you wish to reconstruct from a signal with less fine quantizations'
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value = -1)
# take care of quantizer dropout
mask = indices == -1
indices = indices.masked_fill(mask, 0) # have it fetch a dummy code to be masked out later
all_codes = get_at('q [c] d, b n q -> q b n d', self.codebooks, indices)
# mask out any codes that were dropout-ed
all_codes = all_codes.masked_fill(rearrange(mask, 'b n q -> q b n 1'), 0.)
# scale the codes
scales = rearrange(self.scales, 'q d -> q 1 1 d')
all_codes = all_codes * scales
# if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
all_codes, = unpack(all_codes, ps, 'q b * d')
return all_codes
def get_output_from_indices(self, indices):
codes = self.get_codes_from_indices(indices)
codes_summed = reduce(codes, 'q ... -> ...', 'sum')
return self.project_out(codes_summed)
def forward(
self,
x,
return_all_codes = False,
rand_quantize_dropout_fixed_seed = None
):
num_quant, quant_dropout_multiple_of, device = self.num_quantizers, self.quantize_dropout_multiple_of, x.device
# handle channel first
if self.is_channel_first:
x = rearrange(x, 'b d ... -> b ... d')
x, ps = pack([x], 'b * d')
# maybe project in
x = self.project_in(x)
quantized_out = 0.
residual = x
all_indices = []
should_quantize_dropout = self.training and self.quantize_dropout
# sample a layer index at which to dropout further residual quantization
# also prepare null indices
if should_quantize_dropout:
# check if seed is manually passed in
if not exists(rand_quantize_dropout_fixed_seed):
rand_quantize_dropout_fixed_seed = get_maybe_sync_seed(device)
rand = random.Random(rand_quantize_dropout_fixed_seed)
rand_quantize_dropout_index = rand.randrange(self.quantize_dropout_cutoff_index, num_quant)
if quant_dropout_multiple_of != 1:
rand_quantize_dropout_index = round_up_multiple(rand_quantize_dropout_index + 1, quant_dropout_multiple_of) - 1
null_indices = torch.full(x.shape[:2], -1., device = device, dtype = torch.long)
# go through the layers
with autocast('cuda', enabled = False):
for quantizer_index, (layer, scale) in enumerate(zip(self.layers, self.scales)):
if should_quantize_dropout and quantizer_index > rand_quantize_dropout_index:
all_indices.append(null_indices)
continue
quantized, indices = layer(residual / scale)
quantized = quantized * scale
residual = residual - quantized.detach()
quantized_out = quantized_out + quantized
all_indices.append(indices)
# project out, if needed
quantized_out = self.project_out(quantized_out)
# stack all indices
all_indices = torch.stack(all_indices, dim = -1)
# channel first out
if self.is_channel_first:
quantized_out, = unpack(quantized_out, ps, 'b * d')
all_indices, = unpack(all_indices, ps, 'b * d')
quantized_out = rearrange(quantized_out, 'b ... d -> b d ...')
all_indices = rearrange(all_indices, 'b ... d -> b d ...')
# return
ret = (quantized_out, all_indices)
if not return_all_codes:
return ret
# whether to return all codes from all codebooks across layers
all_codes = self.get_codes_from_indices(all_indices)
# will return all codes in shape (quantizer, batch, sequence length, codebook dimension)
return (*ret, all_codes)
# grouped residual fsq
class GroupedResidualFSQ(Module):
def __init__(
self,
*,
dim,
groups = 1,
accept_image_fmap = False,
**kwargs
):
super().__init__()
self.dim = dim
self.groups = groups
assert (dim % groups) == 0
dim_per_group = dim // groups
self.accept_image_fmap = accept_image_fmap
self.rvqs = nn.ModuleList([])
for _ in range(groups):
self.rvqs.append(ResidualFSQ(
dim = dim_per_group,
**kwargs
))
self.codebook_size = self.rvqs[0].codebook_size
@property
def codebooks(self):
return torch.stack(tuple(rvq.codebooks for rvq in self.rvqs))
@property
def split_dim(self):
return 1 if self.accept_image_fmap else -1
def get_codes_from_indices(self, indices):
codes = tuple(rvq.get_codes_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices))
return torch.stack(codes)
def get_output_from_indices(self, indices):
outputs = tuple(rvq.get_output_from_indices(chunk_indices) for rvq, chunk_indices in zip(self.rvqs, indices))
return torch.cat(outputs, dim = self.split_dim)
def forward(
self,
x,
return_all_codes = False
):
shape, split_dim, device = x.shape, self.split_dim, x.device
assert shape[split_dim] == self.dim
# split the feature dimension into groups
x = x.chunk(self.groups, dim = split_dim)
forward_kwargs = dict(
return_all_codes = return_all_codes,
rand_quantize_dropout_fixed_seed = get_maybe_sync_seed(device) if self.training else None
)
# invoke residual vq on each group
out = tuple(rvq(chunk, **forward_kwargs) for rvq, chunk in zip(self.rvqs, x))
out = tuple(zip(*out))
# otherwise, get all the zipped outputs and combine them
quantized, all_indices, *maybe_all_codes = out
quantized = torch.cat(quantized, dim = split_dim)
all_indices = torch.stack(all_indices)
ret = (quantized, all_indices, *maybe_all_codes)
return ret