- Step 1, download code source
git clone https://github.com/sailist/MMEmo
cd MMEmo
pip install -r requirements.txt
- Step 2, download dataset. (See [Dataset Download](#Dataset Download))
- Step 3, modify
./config.py
, change value of each dataset. - Step 4, run command to reimplement. (See Reimplement)
- (Optional) Step 5, replace feature of your own. (See [Replace Features](#Replace Features))
The format of the dataset
parameter {dataset}-{feature_type}-[replaced feature]-{n_classes}
like:
iemocap-cogmen-4 (raw features provided by cogmen, 4-way)
iemocap-cogmen-6 (raw features provided by cogmen, 6-way)
iemocap-cogmen-sbert-4 (raw features provided by cogmen, with text feature replaced by sbert feature, 4-way)
...
- iemocap-cogmen-sbert-x
TODO
python3 train_mm.py --module=cogmen --dataset=iemocap-cogmen-sbert-4 --modality=atv --reimplement --device=0
python3 train_mm.py --module=cogmen --dataset=iemocap-cogmen-sbert-6 --modality=atv --reimplement --device=0
- MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion Recognition in Conversation paper code
python3 train_mm.py --module=mmgcn --dataset=iemocap-cogmen-sbert-4 --modality=atv --reimplement --device=0
python3 train_mm.py --module=mmgcn --dataset=iemocap-cogmen-sbert-6 --modality=atv --reimplement --device=0
python3 train_mm.py --module=dagerc --dataset=iemocap-cogmen-sbert-4 --modality=atv --reimplement --device=0
python3 train_mm.py --module=dagerc --dataset=iemocap-cogmen-sbert-6 --modality=atv --reimplement --device=0
- DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation paper code
python3 train_mm.py --module=dgcn --dataset=iemocap-cogmen-sbert-4 --modality=atv --reimplement --device=0
python3 train_mm.py --module=dgcn --dataset=iemocap-cogmen-sbert-6 --modality=atv --reimplement --device=0
sentence tranformer feature(used in cogmen)
python3 preprocess_text.py
https://mmaction2.readthedocs.io/en/latest/recognition_models.html#tsn
tsn_r50_1x1x3_100e_kinetics400_rgb, configs/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py
wget https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_1x1x3_100e_kinetics400_rgb/tsn_r50_1x1x3_100e_kinetics400_rgb_20200614-e508be42.pth
tsn_r50_320p_1x1x8_100e_kinetics400_rgb, configs/recognition/tsn/tsn_r50_320p_1x1x8_100e_kinetics400_rgb.py
wget https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_320p_1x1x8_100e_kinetics400_rgb/tsn_r50_320p_1x1x8_100e_kinetics400_rgb_20200702-ef80e3d7.pth
x3d_s_13x6x1_facebook_kinetics400_rgb, configs/recognition/x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py
wget https://download.openmmlab.com/mmaction/recognition/x3d/facebook/x3d_s_facebook_13x6x1_kinetics400_rgb_20201027-623825a0.pth
x3d_m_16x5x1_facebook_kinetics400_rgb, configs/recognition/x3d/x3d_m_16x5x1_facebook_kinetics400_rgb.py
wget https://download.openmmlab.com/mmaction/recognition/x3d/facebook/x3d_m_facebook_16x5x1_kinetics400_rgb_20201027-3f42382a.pth
tsn_r50_1x1x16_50e_sthv2_rgb, configs/recognition/tsn/tsn_r50_1x1x16_50e_sthv2_rgb.py
wget https://download.openmmlab.com/mmaction/recognition/tsn/tsn_r50_1x1x16_50e_sthv2_rgb/tsn_r50_1x1x16_50e_sthv2_rgb_20210816-5d23ac6e.pth
python3 preprocess_video.py --config=../mmaction/configs/recognition/tsn/tsn_r50_320p_1x1x8_100e_kinetics400_rgb.py --checkpoint=~/pretrain/mmaction/tsn_r50_320p_1x1x8_100e_kinetics400_rgb_20200702-ef80e3d7.pth
python3 preprocess_video.py --config=../mmaction/configs/recognition/x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py --checkpoint=~/pretrain/mmaction/x3d_m_facebook_16x5x1_kinetics400_rgb_20201027-3f42382a.pth
python3 preprocess_video.py --config=../mmaction/configs/recognition/tsn/tsn_r50_320p_1x1x8_100e_kinetics400_rgb.py --checkpoint=~/pretrain/mmaction/tsn_r50_320p_1x1x8_100e_kinetics400_rgb_20200702-ef80e3d7.pth --dataset=iemocap-cogmen-video-6
python3 preprocess_video.py --config=../mmaction/configs/recognition/x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py --checkpoint=~/pretrain/mmaction/x3d_m_facebook_16x5x1_kinetics400_rgb_20201027-3f42382a.pth --dataset=iemocap-cogmen-video-6
TODO