-
Notifications
You must be signed in to change notification settings - Fork 3
/
evaluate.py
145 lines (121 loc) · 3.86 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import os
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import Compose
from libs import models
from libs.class_id_map import get_n_classes
from libs.config import get_config
from libs.dataset import ActionSegmentationDataset, collate_fn
from libs.helper import evaluate
from libs.transformer import TempDownSamp, ToTensor
import sys
def get_arguments():
"""
parse all the arguments from command line inteface
return a list of parsed arguments
"""
parser = argparse.ArgumentParser(
description="evaluation for action segment refinement network."
)
parser.add_argument("config", type=str, help="path to a config file")
parser.add_argument(
"--model",
type=str,
default=None,
help="""
path to the trained model.
If you do not specify, the trained model,
'final_model.prm' in result directory will be used.
""",
)
parser.add_argument(
"--refinement_method",
type=str,
default="refinement_with_boundary",
choices=["refinement_with_boundary", "relabeling", "smoothing"],
)
parser.add_argument(
"--cpu", action="store_true", help="Add --cpu option if you use cpu."
)
return parser.parse_args()
def import_class(import_str):
mod_str, _sep, class_str = import_str.rpartition('.')
__import__(mod_str)
try:
return getattr(sys.modules[mod_str], class_str)
except AttributeError:
raise ImportError('Class %s cannot be found (%s)' % (class_str, traceback.format_exception(*sys.exc_info())))
def main():
args = get_arguments()
# configuration
config = get_config(args.config)
result_path = os.path.join(config.result_path, config.dataset, config.model.split('.')[-2], 'split' + str(config.split))
# cpu or gpu
if args.cpu:
device = "cpu"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
torch.backends.cudnn.benchmark = True
device = config.device
# Dataloader
downsamp_rate = 4 if config.dataset == "LARA" else 1
data = ActionSegmentationDataset(
config.dataset,
transform=Compose([ToTensor(), TempDownSamp(downsamp_rate)]),
mode="test",
split=config.split,
dataset_dir=config.dataset_dir,
csv_dir=config.csv_dir,
)
loader = DataLoader(
data,
batch_size=1,
shuffle=False,
num_workers=config.num_workers,
collate_fn=collate_fn,
)
# load model
print("---------- Loading Model ----------")
n_classes = get_n_classes(config.dataset, dataset_dir=config.dataset_dir)
Model = import_class(config.model)
model = Model(
in_channel=config.in_channel,
n_features=config.n_features,
n_classes=n_classes,
n_stages=config.n_stages,
n_layers=config.n_layers,
n_refine_layers=config.n_refine_layers,
n_stages_asb=config.n_stages_asb,
n_stages_brb=config.n_stages_brb,
SFI_layer=config.SFI_layer,
dataset=config.dataset,
)
# send the model to cuda/cpu
model.to(device)
# load the state dict of the model
if args.model is not None:
state_dict = torch.load(args.model)
else:
state_dict = torch.load(os.path.join(result_path, "best_test_model.prm"))
model.load_state_dict(state_dict, False)
# train and validate model
print("---------- Start testing ----------")
# evaluation
evaluate(
loader,
model,
device,
config.boundary_th,
config.dataset,
config.dataset_dir,
config.iou_thresholds,
config.tolerance,
result_path,
config,
args.refinement_method,
)
print("Done")
if __name__ == "__main__":
main()