We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
大佬好,当我用RT-DETR的backbone为ResNet50训练COCO2017数据集时,训练过程中eval的mAP一直是0,且loss在不断下降,pretrain_weights加载的是ResNet50_vd_ssld_v2_pretrained.pdparams,其他参数没做改动;除此之外,每次eval保存的bbox.json文件中,每张图片保存了300个检测框,但是每个检测框的类别、box位置和score都是一样的,请问我需要怎么解决呢?非常期待大佬能够回答一下我的问题,感激不尽~
下面是我训练时的环境: 我用的是PaddlePaddle 2.4.2的镜像,CUDA是11.8。
The text was updated successfully, but these errors were encountered:
用这版代码先试一下 我跑了r18验证 好像没啥问题,
Sorry, something went wrong.
你好,我试了一下,用这版代码跑R50没问题了,感谢大佬~
你好,请问是哪版代码啊
No branches or pull requests
大佬好,当我用RT-DETR的backbone为ResNet50训练COCO2017数据集时,训练过程中eval的mAP一直是0,且loss在不断下降,pretrain_weights加载的是ResNet50_vd_ssld_v2_pretrained.pdparams,其他参数没做改动;除此之外,每次eval保存的bbox.json文件中,每张图片保存了300个检测框,但是每个检测框的类别、box位置和score都是一样的,请问我需要怎么解决呢?非常期待大佬能够回答一下我的问题,感激不尽~
下面是我训练时的环境:
我用的是PaddlePaddle 2.4.2的镜像,CUDA是11.8。
The text was updated successfully, but these errors were encountered: