This repository has been archived by the owner on Jul 18, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
graph.go
693 lines (578 loc) · 17.5 KB
/
graph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
package graph
import (
"fmt"
"reflect"
"sort"
"strings"
"github.com/gonum/graph"
"github.com/gonum/graph/concrete"
"github.com/gonum/graph/encoding/dot"
"k8s.io/apimachinery/pkg/api/meta"
"k8s.io/apimachinery/pkg/util/sets"
)
type Node struct {
concrete.Node
UniqueName
}
// DOTAttributes implements an attribute getter for the DOT encoding
func (n Node) DOTAttributes() []dot.Attribute {
return []dot.Attribute{{Key: "label", Value: fmt.Sprintf("%q", n.UniqueName)}}
}
// ExistenceChecker is an interface for those nodes that can be created without a backing object.
// This can happen when a node wants an edge to a non-existent node. We know the node should exist,
// The graph needs something in that location to track the information we have about the node, but the
// backing object doesn't exist.
type ExistenceChecker interface {
// Found returns false if the node represents an object that we don't have the backing object for
Found() bool
}
type UniqueName string
type UniqueNameFunc func(obj interface{}) UniqueName
func (n UniqueName) UniqueName() string {
return string(n)
}
func (n UniqueName) String() string {
return string(n)
}
type uniqueNamer interface {
UniqueName() UniqueName
}
type NodeFinder interface {
Find(name UniqueName) graph.Node
}
// UniqueNodeInitializer is a graph that allows nodes with a unique name to be added without duplication.
// If the node is newly added, true will be returned.
type UniqueNodeInitializer interface {
FindOrCreate(name UniqueName, fn NodeInitializerFunc) (graph.Node, bool)
}
type NodeInitializerFunc func(Node) graph.Node
func EnsureUnique(g UniqueNodeInitializer, name UniqueName, fn NodeInitializerFunc) graph.Node {
node, _ := g.FindOrCreate(name, fn)
return node
}
type MutableDirectedEdge interface {
AddEdge(from, to graph.Node, edgeKind string)
}
type MutableUniqueGraph interface {
graph.Mutable
MutableDirectedEdge
UniqueNodeInitializer
NodeFinder
}
type Edge struct {
concrete.Edge
kinds sets.String
}
func NewEdge(from, to graph.Node, kinds ...string) Edge {
return Edge{concrete.Edge{F: from, T: to}, sets.NewString(kinds...)}
}
func (e Edge) Kinds() sets.String {
return e.kinds
}
func (e Edge) IsKind(kind string) bool {
return e.kinds.Has(kind)
}
// DOTAttributes implements an attribute getter for the DOT encoding
func (e Edge) DOTAttributes() []dot.Attribute {
return []dot.Attribute{{Key: "label", Value: fmt.Sprintf("%q", strings.Join(e.Kinds().List(), ","))}}
}
type GraphDescriber interface {
Name(node graph.Node) string
Kind(node graph.Node) string
Object(node graph.Node) interface{}
EdgeKinds(edge graph.Edge) sets.String
}
type Interface interface {
graph.Directed
GraphDescriber
MutableUniqueGraph
Edges() []graph.Edge
}
type Namer interface {
ResourceName(obj interface{}) string
}
type namer struct{}
var DefaultNamer Namer = namer{}
func (namer) ResourceName(obj interface{}) string {
switch t := obj.(type) {
case uniqueNamer:
return t.UniqueName().String()
default:
return reflect.TypeOf(obj).String()
}
}
type Graph struct {
// the standard graph
graph.Directed
// helper methods for switching on the kind and types of the node
GraphDescriber
// exposes the public interface for adding nodes
uniqueNamedGraph
// the internal graph object, which allows edges and nodes to be directly added
internal *concrete.DirectedGraph
}
// Graph must implement MutableUniqueGraph
var _ MutableUniqueGraph = Graph{}
// New initializes a graph from input to output.
func New() Graph {
g := concrete.NewDirectedGraph()
return Graph{
Directed: g,
GraphDescriber: typedGraph{},
uniqueNamedGraph: newUniqueNamedGraph(g),
internal: g,
}
}
// Edges returns all the edges of the graph. Note that the returned set
// will have no specific ordering.
func (g Graph) Edges() []graph.Edge {
return g.internal.Edges()
}
func (g Graph) String() string {
ret := ""
nodes := g.Nodes()
sort.Sort(ByID(nodes))
for _, node := range nodes {
ret += fmt.Sprintf("%d: %v\n", node.ID(), g.GraphDescriber.Name(node))
// can't use SuccessorEdges, because I want stable ordering
successors := g.From(node)
sort.Sort(ByID(successors))
for _, successor := range successors {
edge := g.Edge(node, successor)
kinds := g.EdgeKinds(edge)
for _, kind := range kinds.List() {
ret += fmt.Sprintf("\t%v to %d: %v\n", kind, successor.ID(), g.GraphDescriber.Name(successor))
}
}
}
return ret
}
// ByID is a sorted group of nodes by ID
type ByID []graph.Node
func (m ByID) Len() int { return len(m) }
func (m ByID) Swap(i, j int) { m[i], m[j] = m[j], m[i] }
func (m ByID) Less(i, j int) bool {
return m[i].ID() < m[j].ID()
}
// SyntheticNodes returns back the set of nodes that were created in response to edge requests, but did not exist
func (g Graph) SyntheticNodes() []graph.Node {
ret := []graph.Node{}
nodes := g.Nodes()
sort.Sort(ByID(nodes))
for _, node := range nodes {
if potentiallySyntheticNode, ok := node.(ExistenceChecker); ok {
if !potentiallySyntheticNode.Found() {
ret = append(ret, node)
}
}
}
return ret
}
// NodesByKind returns all the nodes of the graph with the provided kinds
func (g Graph) NodesByKind(nodeKinds ...string) []graph.Node {
ret := []graph.Node{}
kinds := sets.NewString(nodeKinds...)
for _, node := range g.internal.Nodes() {
if kinds.Has(g.Kind(node)) {
ret = append(ret, node)
}
}
return ret
}
// RootNodes returns all the roots of this graph.
func (g Graph) RootNodes() []graph.Node {
roots := []graph.Node{}
for _, n := range g.Nodes() {
if len(g.To(n)) != 0 {
continue
}
roots = append(roots, n)
}
return roots
}
// PredecessorEdges invokes fn with all of the predecessor edges of node that have the specified
// edge kind.
func (g Graph) PredecessorEdges(node graph.Node, fn EdgeFunc, edgeKinds ...string) {
for _, n := range g.To(node) {
edge := g.Edge(n, node)
kinds := g.EdgeKinds(edge)
if kinds.HasAny(edgeKinds...) {
fn(g, n, node, kinds)
}
}
}
// SuccessorEdges invokes fn with all of the successor edges of node that have the specified
// edge kind.
func (g Graph) SuccessorEdges(node graph.Node, fn EdgeFunc, edgeKinds ...string) {
for _, n := range g.From(node) {
edge := g.Edge(node, n)
kinds := g.EdgeKinds(edge)
if kinds.HasAny(edgeKinds...) {
fn(g, n, node, kinds)
}
}
}
// OutboundEdges returns all the outbound edges from node that are in the list of edgeKinds
// if edgeKinds is empty, then all edges are returned
func (g Graph) OutboundEdges(node graph.Node, edgeKinds ...string) []graph.Edge {
ret := []graph.Edge{}
for _, n := range g.From(node) {
edge := g.Edge(node, n)
if edge == nil {
continue
}
if len(edgeKinds) == 0 || g.EdgeKinds(edge).HasAny(edgeKinds...) {
ret = append(ret, edge)
}
}
return ret
}
// InboundEdges returns all the inbound edges to node that are in the list of edgeKinds
// if edgeKinds is empty, then all edges are returned
func (g Graph) InboundEdges(node graph.Node, edgeKinds ...string) []graph.Edge {
ret := []graph.Edge{}
for _, n := range g.To(node) {
edge := g.Edge(n, node)
if edge == nil {
continue
}
if len(edgeKinds) == 0 || g.EdgeKinds(edge).HasAny(edgeKinds...) {
ret = append(ret, edge)
}
}
return ret
}
// PredecessorNodesByEdgeKind returns all the predecessor nodes of the given node
// that can be reached via edges of the provided kinds
func (g Graph) PredecessorNodesByEdgeKind(node graph.Node, edgeKinds ...string) []graph.Node {
ret := []graph.Node{}
for _, inboundEdges := range g.InboundEdges(node, edgeKinds...) {
ret = append(ret, inboundEdges.From())
}
return ret
}
// SuccessorNodesByEdgeKind returns all the successor nodes of the given node
// that can be reached via edges of the provided kinds
func (g Graph) SuccessorNodesByEdgeKind(node graph.Node, edgeKinds ...string) []graph.Node {
ret := []graph.Node{}
for _, outboundEdge := range g.OutboundEdges(node, edgeKinds...) {
ret = append(ret, outboundEdge.To())
}
return ret
}
func (g Graph) SuccessorNodesByNodeAndEdgeKind(node graph.Node, nodeKind, edgeKind string) []graph.Node {
ret := []graph.Node{}
for _, successor := range g.SuccessorNodesByEdgeKind(node, edgeKind) {
if g.Kind(successor) != nodeKind {
continue
}
ret = append(ret, successor)
}
return ret
}
func (g Graph) AddNode(n graph.Node) {
g.internal.AddNode(n)
}
// AddEdge implements MutableUniqueGraph
func (g Graph) AddEdge(from, to graph.Node, edgeKind string) {
// a Contains edge has semantic meaning for osgraph.Graph objects. It never makes sense
// to allow a single object to be "contained" by multiple nodes.
if edgeKind == ContainsEdgeKind {
// check incoming edges on the 'to' node to be certain that we aren't already contained
containsEdges := g.InboundEdges(to, ContainsEdgeKind)
if len(containsEdges) != 0 {
// TODO consider changing the AddEdge API to make this cleaner. This is a pretty severe programming error
panic(fmt.Sprintf("%v is already contained by %v", to, containsEdges))
}
}
kinds := sets.NewString(edgeKind)
if existingEdge := g.Edge(from, to); existingEdge != nil {
kinds.Insert(g.EdgeKinds(existingEdge).List()...)
}
g.internal.SetEdge(NewEdge(from, to, kinds.List()...), 1.0)
}
// addEdges adds the specified edges, filtered by the provided edge connection
// function.
func (g Graph) addEdges(edges []graph.Edge, fn EdgeFunc) {
for _, e := range edges {
switch t := e.(type) {
case concrete.WeightedEdge:
if fn(g, t.From(), t.To(), t.Edge.(Edge).Kinds()) {
g.internal.SetEdge(t.Edge.(Edge), t.Cost)
}
case Edge:
if fn(g, t.From(), t.To(), t.Kinds()) {
g.internal.SetEdge(t, 1.0)
}
default:
panic("bad edge")
}
}
}
// NodeFunc is passed a new graph, a node in the graph, and should return true if the
// node should be included.
type NodeFunc func(g Interface, n graph.Node) bool
// NodesOfKind returns a new NodeFunc accepting the provided kinds of nodes
// If no kinds are specified, the returned NodeFunc will accept all nodes
func NodesOfKind(kinds ...string) NodeFunc {
if len(kinds) == 0 {
return func(g Interface, n graph.Node) bool {
return true
}
}
allowedKinds := sets.NewString(kinds...)
return func(g Interface, n graph.Node) bool {
return allowedKinds.Has(g.Kind(n))
}
}
// EdgeFunc is passed a new graph, an edge in the current graph, and should mutate
// the new graph as needed. If true is returned, the existing edge will be added to the graph.
type EdgeFunc func(g Interface, from, to graph.Node, edgeKinds sets.String) bool
// EdgesOfKind returns a new EdgeFunc accepting the provided kinds of edges
// If no kinds are specified, the returned EdgeFunc will accept all edges
func EdgesOfKind(kinds ...string) EdgeFunc {
if len(kinds) == 0 {
return func(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
return true
}
}
allowedKinds := sets.NewString(kinds...)
return func(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
return allowedKinds.HasAny(edgeKinds.List()...)
}
}
// RemoveInboundEdges returns a new EdgeFunc dismissing any inbound edges to
// the provided set of nodes
func RemoveInboundEdges(nodes []graph.Node) EdgeFunc {
return func(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
for _, node := range nodes {
if node == to {
return false
}
}
return true
}
}
func RemoveOutboundEdges(nodes []graph.Node) EdgeFunc {
return func(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
for _, node := range nodes {
if node == from {
return false
}
}
return true
}
}
// EdgeSubgraph returns the directed subgraph with only the edges that match the
// provided function.
func (g Graph) EdgeSubgraph(edgeFn EdgeFunc) Graph {
out := New()
for _, node := range g.Nodes() {
out.internal.AddNode(node)
}
out.addEdges(g.internal.Edges(), edgeFn)
return out
}
// Subgraph returns the directed subgraph with only the nodes and edges that match the
// provided functions.
func (g Graph) Subgraph(nodeFn NodeFunc, edgeFn EdgeFunc) Graph {
out := New()
for _, node := range g.Nodes() {
if nodeFn(out, node) {
out.internal.AddNode(node)
}
}
out.addEdges(g.internal.Edges(), edgeFn)
return out
}
// SubgraphWithNodes returns the directed subgraph with only the listed nodes and edges that
// match the provided function.
func (g Graph) SubgraphWithNodes(nodes []graph.Node, fn EdgeFunc) Graph {
out := New()
for _, node := range nodes {
out.internal.AddNode(node)
}
out.addEdges(g.internal.Edges(), fn)
return out
}
// ConnectedEdgeSubgraph creates a new graph that iterates through all edges in the graph
// and includes all edges the provided function returns true for. Nodes not referenced by
// an edge will be dropped unless the function adds them explicitly.
func (g Graph) ConnectedEdgeSubgraph(fn EdgeFunc) Graph {
out := New()
out.addEdges(g.internal.Edges(), fn)
return out
}
// AllNodes includes all nodes in the graph
func AllNodes(g Interface, node graph.Node) bool {
return true
}
// ExistingDirectEdge returns true if both from and to already exist in the graph and the edge kind is
// not ReferencedByEdgeKind (the generic reverse edge kind). This will purge the graph of any
// edges created by AddReversedEdge.
func ExistingDirectEdge(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
return !edgeKinds.Has(ReferencedByEdgeKind) && g.Has(from) && g.Has(to)
}
// ReverseExistingDirectEdge reverses the order of the edge and drops the existing edge only if
// both from and to already exist in the graph and the edge kind is not ReferencedByEdgeKind
// (the generic reverse edge kind).
func ReverseExistingDirectEdge(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
return ExistingDirectEdge(g, from, to, edgeKinds) && ReverseGraphEdge(g, from, to, edgeKinds)
}
// ReverseGraphEdge reverses the order of the edge and drops the existing edge.
func ReverseGraphEdge(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
for edgeKind := range edgeKinds {
g.AddEdge(to, from, edgeKind)
}
return false
}
// AddReversedEdge adds a reversed edge for every passed edge and preserves the existing
// edge. Used to convert a one directional edge into a bidirectional edge, but will
// create duplicate edges if a bidirectional edge between two nodes already exists.
func AddReversedEdge(g Interface, from, to graph.Node, edgeKinds sets.String) bool {
g.AddEdge(to, from, ReferencedByEdgeKind)
return true
}
// AddGraphEdgesTo returns an EdgeFunc that will add the selected edges to the passed
// graph.
func AddGraphEdgesTo(g Interface) EdgeFunc {
return func(_ Interface, from, to graph.Node, edgeKinds sets.String) bool {
for edgeKind := range edgeKinds {
g.AddEdge(from, to, edgeKind)
}
return false
}
}
type uniqueNamedGraph struct {
graph.Mutable
names map[UniqueName]graph.Node
}
func newUniqueNamedGraph(g graph.Mutable) uniqueNamedGraph {
return uniqueNamedGraph{
Mutable: g,
names: make(map[UniqueName]graph.Node),
}
}
func (g uniqueNamedGraph) FindOrCreate(name UniqueName, fn NodeInitializerFunc) (graph.Node, bool) {
if node, ok := g.names[name]; ok {
return node, true
}
id := g.NewNodeID()
node := fn(Node{concrete.Node(id), name})
g.names[name] = node
g.AddNode(node)
return node, false
}
func (g uniqueNamedGraph) Find(name UniqueName) graph.Node {
if node, ok := g.names[name]; ok {
return node
}
return nil
}
type typedGraph struct{}
func (g typedGraph) Name(node graph.Node) string {
switch t := node.(type) {
case fmt.Stringer:
return t.String()
case uniqueNamer:
return t.UniqueName().String()
default:
return fmt.Sprintf("<unknown:%d>", node.ID())
}
}
type objectifier interface {
Object() interface{}
}
func (g typedGraph) Object(node graph.Node) interface{} {
switch t := node.(type) {
case objectifier:
return t.Object()
default:
return nil
}
}
type kind interface {
Kind() string
}
func (g typedGraph) Kind(node graph.Node) string {
if k, ok := node.(kind); ok {
return k.Kind()
}
return UnknownNodeKind
}
func (g typedGraph) EdgeKinds(edge graph.Edge) sets.String {
var e Edge
switch t := edge.(type) {
case concrete.WeightedEdge:
e = t.Edge.(Edge)
case Edge:
e = t
default:
return sets.NewString(UnknownEdgeKind)
}
return e.Kinds()
}
type NodeSet map[int]struct{}
func (n NodeSet) Has(id int) bool {
_, ok := n[id]
return ok
}
func (n NodeSet) Add(id int) {
n[id] = struct{}{}
}
func NodesByKind(g Interface, nodes []graph.Node, kinds ...string) [][]graph.Node {
buckets := make(map[string]int)
for i, kind := range kinds {
buckets[kind] = i
}
if nodes == nil {
nodes = g.Nodes()
}
last := len(kinds)
result := make([][]graph.Node, last+1)
for _, node := range nodes {
if bucket, ok := buckets[g.Kind(node)]; ok {
result[bucket] = append(result[bucket], node)
} else {
result[last] = append(result[last], node)
}
}
return result
}
// IsFromDifferentNamespace returns if a node is in a different namespace
// than the one provided.
func IsFromDifferentNamespace(namespace string, node graph.Node) bool {
potentiallySyntheticNode, ok := node.(ExistenceChecker)
if !ok || potentiallySyntheticNode.Found() {
return false
}
objectified, ok := node.(objectifier)
if !ok {
return false
}
object, err := meta.Accessor(objectified)
if err != nil {
return false
}
return object.GetNamespace() != namespace
}
func pathCovered(path []graph.Node, paths map[int][]graph.Node) bool {
l := len(path)
for _, existing := range paths {
if l >= len(existing) {
continue
}
if pathEqual(path, existing) {
return true
}
}
return false
}
func pathEqual(a, b []graph.Node) bool {
for i := range a {
if a[i] != b[i] {
return false
}
}
return true
}