forked from bckenstler/CLR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clr_scheduler.py
124 lines (112 loc) · 4.92 KB
/
clr_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from fastai.basic_train import *
import numpy as np
class CircularLRScheduler(LearnerCallback):
"""This callback implements a cyclical learning rate policy (CLR).
The method cycles the learning rate between two boundaries with
some constant frequency, as detailed in this paper (https://arxiv.org/abs/1506.01186).
The amplitude of the cycle can be scaled on a per-iteration or
per-cycle basis.
This class has three built-in policies, as put forth in the paper.
"triangular":
A basic triangular cycle w/ no amplitude scaling.
"triangular2":
A basic triangular cycle that scales initial amplitude by half each cycle.
"exp_range":
A cycle that scales initial amplitude by gamma**(cycle iterations) at each
cycle iteration.
For more detail, please see paper.
# Example
```python
clr = CircularLRScheduler(learn, mode='triangular',
base_lr=0.001, max_lr=0.003, step_size=42)
learn.fit(3, callbacks=[clr])
```
Class also supports custom scaling functions:
```python
clr_fn = lambda x: 0.5*(1+np.sin(x*np.pi/2.))
clr = CircularLRScheduler(learn, mode='triangular',
base_lr=0.001, max_lr=0.003,
scale_fn=clr_fn,
step_size=42)
learn.fit(3, callbacks=[clr])
```
# Arguments
base_lr: initial learning rate which is the
lower boundary in the cycle.
max_lr: upper boundary in the cycle. Functionally,
it defines the cycle amplitude (max_lr - base_lr).
The lr at any cycle is the sum of base_lr
and some scaling of the amplitude; therefore
max_lr may not actually be reached depending on
scaling function.
step_size: number of training iterations per
half cycle. Authors suggest setting step_size
2-8 x training iterations in epoch.
mode: one of {triangular, triangular2, exp_range}.
Default 'triangular'.
Values correspond to policies detailed above.
If scale_fn is not None, this argument is ignored.
gamma: constant in 'exp_range' scaling function:
gamma**(cycle iterations)
scale_fn: Custom scaling policy defined by a single
argument lambda function, where
0 <= scale_fn(x) <= 1 for all x >= 0.
mode paramater is ignored
scale_mode: {'cycle', 'iterations'}.
Defines whether scale_fn is evaluated on
cycle number or cycle iterations (training
iterations since start of cycle). Default is 'cycle'.
"""
def __init__(self, learn:Learner,base_lr=0.001, max_lr=0.003, step_size=42., mode='triangular',
gamma=1., scale_fn=None, scale_mode='cycle'):
super().__init__(learn)
self.base_lr = base_lr
self.max_lr = max_lr
self.step_size = step_size
self.mode = mode
self.gamma = gamma
if scale_fn == None:
if self.mode == 'triangular':
self.scale_fn = lambda x: 1.
self.scale_mode = 'cycle'
elif self.mode == 'triangular2':
self.scale_fn = lambda x: 1/(2.**(x-1))
self.scale_mode = 'cycle'
elif self.mode == 'exp_range':
self.scale_fn = lambda x: gamma**(x)
self.scale_mode = 'iterations'
else:
self.scale_fn = scale_fn
self.scale_mode = scale_mode
self.clr_iterations = 0.
self.trn_iterations = 0.
self._reset()
def _reset(self, new_base_lr=None, new_max_lr=None,
new_step_size=None):
"""Resets cycle iterations.
Optional boundary/step size adjustment.
"""
if new_base_lr != None:
self.base_lr = new_base_lr
if new_max_lr != None:
self.max_lr = new_max_lr
if new_step_size != None:
self.step_size = new_step_size
self.clr_iterations = 0.
def on_train_begin(self, **kwargs)->None:
if self.clr_iterations == 0:
self.learn.opt.lr = self.base_lr
else:
self.learn.opt.lr = self.clr()
def clr(self):
cycle = np.floor(1+self.clr_iterations/(2*self.step_size))
x = np.abs(self.clr_iterations/self.step_size - 2*cycle + 1)
if self.scale_mode == 'cycle':
return self.base_lr + (self.max_lr-self.base_lr)*np.maximum(0, (1-x))*self.scale_fn(cycle)
else:
return self.base_lr + (self.max_lr-self.base_lr)*np.maximum(0, (1-x))*self.scale_fn(self.clr_iterations)
def on_batch_end(self, train, **kwargs)->None:
if train:
self.trn_iterations += 1
self.clr_iterations += 1
self.learn.opt.lr = self.clr()