-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
465 lines (364 loc) · 21.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""
License: Apache-2.0
Author: Suofei Zhang | Hang Yu
E-mail: zhangsuofei at njupt.edu.cn | hangyu5 at illinois.edu
"""
import time
import warnings
import tensorflow as tf
import tensorflow.contrib.slim as slim
from config import cfg
import os
import numpy as np
import logging
import daiquiri
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
warnings.filterwarnings("ignore")
daiquiri.setup(level=logging.DEBUG)
logger = daiquiri.getLogger(__name__)
is_print = 0
hist = 0
i = 0
j = 0
def cross_ent_loss(output, x, y):
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=output)
loss = tf.reduce_mean(loss)
num_class = int(output.get_shape()[-1])
data_size = int(x.get_shape()[1])
# reconstruction loss
y = tf.one_hot(y, num_class, dtype=tf.float32)
y = tf.expand_dims(y, axis=2)
output = tf.expand_dims(output, axis=2)
output = tf.reshape(tf.multiply(output, y), shape=[cfg.batch_size, -1])
tf.logging.info("decoder input value dimension:{}".format(output.get_shape()))
with tf.variable_scope('decoder'):
output = slim.fully_connected(output, 512, trainable=True)
output = slim.fully_connected(output, 1024, trainable=True)
output = slim.fully_connected(output, data_size * data_size,
trainable=True, activation_fn=tf.sigmoid)
x = tf.reshape(x, shape=[cfg.batch_size, -1])
reconstruction_loss = tf.reduce_mean(tf.square(output - x))
# regularization loss
regularization = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
# loss+0.0005*reconstruction_loss+regularization#
loss_all = tf.add_n([loss] + [0.0005 * reconstruction_loss] + regularization)
return loss_all, reconstruction_loss, output
def spread_loss(output, pose_out, x, y, m):
"""
# check NaN
# See: https://stackoverflow.com/questions/40701712/how-to-check-nan-in-gradients-in-tensorflow-when-updating
output_check = [tf.check_numerics(output, message='NaN Found!')]
with tf.control_dependencies(output_check):
"""
num_class = int(output.get_shape()[-1])
data_size = int(x.get_shape()[1])
y = tf.one_hot(y, num_class, dtype=tf.float32)
# spread loss
output1 = tf.reshape(output, shape=[cfg.batch_size, 1, num_class])
y = tf.expand_dims(y, axis=2)
at = tf.matmul(output1, y)
"""Paper eq(5)."""
loss = tf.square(tf.maximum(0., m - (at - output1)))
loss = tf.matmul(loss, 1. - y)
loss = tf.reduce_mean(loss)
# reconstruction loss
# pose_out = tf.reshape(tf.matmul(pose_out, y, transpose_a=True), shape=[cfg.batch_size, -1])
pose_out = tf.reshape(tf.multiply(pose_out, y), shape=[cfg.batch_size, -1])
tf.logging.info("decoder input value dimension:{}".format(pose_out.get_shape()))
with tf.variable_scope('decoder'):
pose_out = slim.fully_connected(pose_out, 512, trainable=True, weights_regularizer=tf.contrib.layers.l2_regularizer(5e-04))
pose_out = slim.fully_connected(pose_out, 1024, trainable=True, weights_regularizer=tf.contrib.layers.l2_regularizer(5e-04))
pose_out = slim.fully_connected(pose_out, data_size * data_size,
trainable=True, activation_fn=tf.sigmoid, weights_regularizer=tf.contrib.layers.l2_regularizer(5e-04))
x = tf.reshape(x, shape=[cfg.batch_size, -1])
reconstruction_loss = tf.reduce_mean(tf.square(pose_out - x))
if cfg.weight_reg:
# regularization loss
regularization = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
# loss+0.0005*reconstruction_loss+regularization#
loss_all = tf.add_n([loss] + [0.0005 * data_size* data_size * reconstruction_loss] + regularization)
else:
loss_all = tf.add_n([loss] + [0.0005 * data_size* data_size * reconstruction_loss])
return loss_all, loss, reconstruction_loss, pose_out
# input should be a tensor with size as [batch_size, height, width, channels]
def kernel_tile(input, kernel, stride):
# output = tf.extract_image_patches(input, ksizes=[1, kernel, kernel, 1], strides=[1, stride, stride, 1], rates=[1, 1, 1, 1], padding='VALID')
input_shape = input.get_shape()
tile_filter = np.zeros(shape=[kernel, kernel, input_shape[3],
kernel * kernel], dtype=np.float32)
for i in range(kernel):
for j in range(kernel):
tile_filter[i, j, :, i * kernel + j] = 1.0
tile_filter_op = tf.constant(tile_filter, dtype=tf.float32)
output = tf.nn.depthwise_conv2d(input, tile_filter_op, strides=[
1, stride, stride, 1], padding='VALID')
output_shape = output.get_shape()
output = tf.reshape(output, shape=[int(output_shape[0]), int(
output_shape[1]), int(output_shape[2]), int(input_shape[3]), kernel * kernel])
output = tf.transpose(output, perm=[0, 1, 2, 4, 3])
return output
# input should be a tensor with size as [batch_size, caps_num_i, 16]
def mat_transform(input, caps_num_c, regularizer, tag=False):
batch_size = int(input.get_shape()[0])
caps_num_i = int(input.get_shape()[1])
output = tf.reshape(input, shape=[batch_size, caps_num_i, 1, 4, 4])
# the output of capsule is miu, the mean of a Gaussian, and activation, the sum of probabilities
# it has no relationship with the absolute values of w and votes
# using weights with bigger stddev helps numerical stability
w = slim.variable('w', shape=[1, caps_num_i, caps_num_c, 4, 4], dtype=tf.float32,
initializer=tf.truncated_normal_initializer(mean=0.0, stddev=1.0),
regularizer=regularizer)
w = tf.tile(w, [batch_size, 1, 1, 1, 1])
output = tf.tile(output, [1, 1, caps_num_c, 1, 1])
votes = tf.reshape(tf.matmul(output, w), [batch_size, caps_num_i, caps_num_c, 16])
return votes
def build_arch_baseline(input, is_train: bool, num_classes: int):
bias_initializer = tf.truncated_normal_initializer(
mean=0.0, stddev=0.01) # tf.constant_initializer(0.0)
# The paper didnot mention any regularization, a common l2 regularizer to weights is added here
weights_regularizer = tf.contrib.layers.l2_regularizer(5e-04)
tf.logging.info('input shape: {}'.format(input.get_shape()))
# weights_initializer=initializer,
with slim.arg_scope([slim.conv2d, slim.fully_connected], trainable=is_train, biases_initializer=bias_initializer, weights_regularizer=weights_regularizer):
with tf.variable_scope('relu_conv1') as scope:
output = slim.conv2d(input, num_outputs=32, kernel_size=[
5, 5], stride=1, padding='SAME', scope=scope, activation_fn=tf.nn.relu)
if(hist):
o1 = tf.summary.histogram("Hist of Act1 ", output)
tf.logging.info('output shape before maxpooling: {}'.format(output.get_shape()))
output = slim.max_pool2d(output, [2, 2], scope='max_2d_layer1')
if(hist):
o2 = tf.summary.histogram("Hist of Pool1 ", output)
tf.logging.info('output shape: {}'.format(output.get_shape()))
with tf.variable_scope('relu_conv2') as scope:
output = slim.conv2d(output, num_outputs=64, kernel_size=[
5, 5], stride=1, padding='SAME', scope=scope, activation_fn=tf.nn.relu)
if(hist):
o3 = tf.summary.histogram("Hist of Act2 ", output)
tf.logging.info('output shape before maxpooling: {}'.format(output.get_shape()))
output = slim.max_pool2d(output, [2, 2], scope='max_2d_layer2')
if(hist):
o4 = tf.summary.histogram("Hist of Pose2 ", output)
tf.logging.info('output shape: {}'.format(output.get_shape()))
output = slim.flatten(output)
output = slim.fully_connected(output, 1024, scope='relu_fc3', activation_fn=tf.nn.relu)
if(hist):
o5 = tf.summary.histogram("Hist of FC_Act ", output)
tf.logging.info('output shape: {}'.format(output.get_shape()))
output = slim.dropout(output, 0.5, scope='dp')
output = slim.fully_connected(output, num_classes, scope='final_layer', activation_fn=None)
tf.logging.info('output shape: {}'.format(output.get_shape()))
if(hist):
h = tf.summary.merge([o1, o2 ,o3, o4, o5 ])
else:
h = []
return output, h
def build_arch(input, coord_add, is_train: bool, num_classes: int):
test1 = []
data_size = int(input.get_shape()[1])
bias_initializer = tf.truncated_normal_initializer(
mean=0.0, stddev=0.01) # tf.constant_initializer(0.0)
# The paper didnot mention any regularization, a common l2 regularizer to weights is added here
weights_regularizer = tf.contrib.layers.l2_regularizer(5e-04)
tf.logging.info('input shape: {}'.format(input.get_shape()))
# weights_initializer=initializer,
with slim.arg_scope([slim.conv2d], trainable=is_train, biases_initializer=bias_initializer, weights_regularizer=weights_regularizer):
with tf.variable_scope('relu_conv1') as scope:
output = slim.conv2d(input, num_outputs=cfg.A, kernel_size=[
5, 5], stride=2, padding='VALID', scope=scope, activation_fn=tf.nn.relu)
data_size = int(np.floor((data_size - 4) / 2))
# stupid.Print
if (is_print==1):
output = tf.Print(output,[output[0,:,:,:]],'Activation_Relu',summarize= cfg.A*data_size*data_size )
assert output.get_shape() == [cfg.batch_size, data_size, data_size, cfg.A]
tf.logging.info('conv1 output shape: {}'.format(output.get_shape()))
with tf.variable_scope('primary_caps') as scope:
pose = slim.conv2d(output, num_outputs=cfg.B * 16,
kernel_size=[1, 1], stride=1, padding='VALID', scope=scope, activation_fn=None)
activation = slim.conv2d(output, num_outputs=cfg.B, kernel_size=[
1, 1], stride=1, padding='VALID', scope='primary_caps/activation', activation_fn=tf.nn.sigmoid)
pose = tf.reshape(pose, shape=[cfg.batch_size, data_size, data_size, cfg.B, 16])
if(hist):
hist_p_pc = tf.summary.histogram("Hist of Pose of Primary Capsule", pose)
# stupid.Print
if (is_print==1):
pose = tf.Print(pose,[pose[:,:,:,:,:]],'Pose_PC',summarize= cfg.B *data_size*data_size* 16 )
activation = tf.reshape(
activation, shape=[cfg.batch_size, data_size, data_size, cfg.B, 1])
# stupid.Print
if (is_print==1):
activation = tf.Print(activation,[activation[:,:,:,:,:]],'Activation_PC',summarize= cfg.B*data_size*data_size )
output = tf.concat([pose, activation], axis=4)
output = tf.reshape(output, shape=[cfg.batch_size, data_size, data_size, -1])
assert output.get_shape() == [cfg.batch_size, data_size, data_size, cfg.B * 17]
tf.logging.info('primary capsule output shape: {}'.format(output.get_shape()))
with tf.variable_scope('conv_caps1') as scope:
output = kernel_tile(output, 3, 2)
data_size = int(np.floor((data_size - 2) / 2))
output = tf.reshape(output, shape=[cfg.batch_size *
data_size * data_size, 3 * 3 * cfg.B, 17])
activation = tf.reshape(output[:, :, 16], shape=[
cfg.batch_size * data_size * data_size, 3 * 3 * cfg.B, 1])
with tf.variable_scope('v') as scope:
votes = mat_transform(output[:, :, :16], cfg.C, weights_regularizer, tag=True)
if(hist):
hist_v_1= tf.summary.histogram(name="Conv1 Votes", values=votes)
tf.logging.info('conv cap 1 votes shape: {}'.format(votes.get_shape()))
with tf.variable_scope('routing') as scope:
miu, activation, _ = em_routing(votes, activation, cfg.C, weights_regularizer)
tf.logging.info('conv cap 1 miu shape: {}'.format(miu.get_shape()))
tf.logging.info('conv cap 1 activation before reshape: {}'.format(
activation.get_shape()))
pose = tf.reshape(miu, shape=[cfg.batch_size, data_size, data_size, cfg.C, 16])
if(hist):
hist_p_c1 = tf.summary.histogram("Hist of Pose of Conv1", pose)
# stupid.Print
if (is_print==1):
pose = tf.Print(pose,[pose[:,:,:,:,:]],'Pose_CC1',summarize= cfg.C *data_size*data_size* 16 )
tf.logging.info('conv cap 1 pose shape: {}'.format(pose.get_shape()))
activation = tf.reshape(
activation, shape=[cfg.batch_size, data_size, data_size, cfg.C, 1])
# stupid.Print
if (is_print==1):
activation = tf.Print(activation,[activation[:,:,:,:,:]],'Activation_CC1',summarize= cfg.C*data_size*data_size )
if(hist):
hist_a_c1= tf.summary.histogram(name="Conv1 Activations", values=activation)
tf.logging.info('conv cap 1 activation after reshape: {}'.format(
activation.get_shape()))
output = tf.reshape(tf.concat([pose, activation], axis=4), [
cfg.batch_size, data_size, data_size, -1])
tf.logging.info('conv cap 1 output shape: {}'.format(output.get_shape()))
with tf.variable_scope('conv_caps2') as scope:
output = kernel_tile(output, 3, 1)
data_size = int(np.floor((data_size - 2) / 1))
output = tf.reshape(output, shape=[cfg.batch_size *
data_size * data_size, 3 * 3 * cfg.C, 17])
activation = tf.reshape(output[:, :, 16], shape=[
cfg.batch_size * data_size * data_size, 3 * 3 * cfg.C, 1])
with tf.variable_scope('v') as scope:
votes = mat_transform(output[:, :, :16], cfg.D, weights_regularizer)
if(hist):
hist_v_2= tf.summary.histogram(name="Conv2 Votes", values=votes)
tf.logging.info('conv cap 2 votes shape: {}'.format(votes.get_shape()))
with tf.variable_scope('routing') as scope:
miu, activation, _ = em_routing(votes, activation, cfg.D, weights_regularizer)
pose = tf.reshape(miu, shape=[cfg.batch_size * data_size * data_size, cfg.D, 16])
if(hist):
hist_p_c2 = tf.summary.histogram("Hist of Pose of Conv2", pose)
# stupid.Print
if (is_print==1):
pose = tf.Print(pose,[pose[:,:,:]],'Pose_CC22',summarize= cfg.D * data_size*data_size* 16 )
tf.logging.info('conv cap 2 pose shape: {}'.format(votes.get_shape()))
activation = tf.reshape(
activation, shape=[cfg.batch_size * data_size * data_size, cfg.D, 1])
if(hist):
hist_a_c2= tf.summary.histogram(name="Conv2 Activations", values=activation)
# stupid.Print
if (is_print==1):
activation = tf.Print(activation,[activation[:,:,:]],'Activation_CC2',summarize= data_size * data_size * cfg.D )
tf.logging.info('conv cap 2 activation shape: {}'.format(activation.get_shape()))
# It is not clear from the paper that ConvCaps2 is full connected to Class Capsules, or is conv connected with kernel size of 1*1 and a global average pooling.
# From the description in Figure 1 of the paper and the amount of parameters (310k in the paper and 316,853 in fact), I assume a conv cap plus a golbal average pooling is the design.
with tf.variable_scope('class_caps') as scope:
with tf.variable_scope('v') as scope:
votes = mat_transform(pose, num_classes, weights_regularizer)
if(hist):
hist_p_cc = tf.summary.histogram("Hist of Pose of class caps", pose)
assert votes.get_shape() == [cfg.batch_size * data_size *
data_size, cfg.D, num_classes, 16]
tf.logging.info('class cap votes original shape: {}'.format(votes.get_shape()))
coord_add = np.reshape(coord_add, newshape=[data_size * data_size, 1, 1, 2])
coord_add = np.tile(coord_add, [cfg.batch_size, cfg.D, num_classes, 1])
coord_add_op = tf.constant(coord_add, dtype=tf.float32)
votes = tf.concat([coord_add_op, votes], axis=3)
tf.logging.info('class cap votes coord add shape: {}'.format(votes.get_shape()))
with tf.variable_scope('routing') as scope:
miu, activation, test2 = em_routing(
votes, activation, num_classes, weights_regularizer)
tf.logging.info(
'class cap activation shape: {}'.format(activation.get_shape()))
output = tf.reshape(activation, shape=[
cfg.batch_size, data_size, data_size, num_classes])
# stupid.Print
if(is_print==1):
output = tf.Print(output,[output[:,:,:]],'activation_class',summarize= data_size * data_size * num_classes )
output = tf.reshape(tf.nn.avg_pool(output, ksize=[1, data_size, data_size, 1], strides=[
1, 1, 1, 1], padding='VALID'), shape=[cfg.batch_size, num_classes])
tf.logging.info('class cap output shape: {}'.format(output.get_shape()))
pose = tf.nn.avg_pool(tf.reshape(miu, shape=[cfg.batch_size, data_size, data_size, -1]), ksize=[
1, data_size, data_size, 1], strides=[1, 1, 1, 1], padding='VALID')
pose_out = tf.reshape(pose, shape=[cfg.batch_size, num_classes, 18])
# stupid.Print
if(is_print==1):
pose_out = tf.Print(pose_out,[pose_out[0,:,:]],'Pose_CC22',summarize= num_classes * 18 )
if(hist):
h = tf.summary.merge([hist_a_c1,hist_a_c2, hist_v_1,hist_v_2,hist_p_cc, hist_p_pc, hist_p_c1, hist_p_c2 ])
else:
h = []
return output, pose_out, h
def test_accuracy(logits, labels):
logits_idx = tf.to_int32(tf.argmax(logits, axis=1))
logits_idx = tf.reshape(logits_idx, shape=(cfg.batch_size,))
correct_preds = tf.equal(tf.to_int32(labels), logits_idx)
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) / cfg.batch_size
return accuracy
def em_routing(votes, activation, caps_num_c, regularizer, tag=False):
test = []
batch_size = int(votes.get_shape()[0])
caps_num_i = int(activation.get_shape()[1])
n_channels = int(votes.get_shape()[-1])
sigma_square = []
miu = []
activation_out = []
beta_v = slim.variable('beta_v', shape=[caps_num_c, n_channels], dtype=tf.float32,
initializer=tf.constant_initializer(0.0),#tf.truncated_normal_initializer(mean=0.0, stddev=0.01),
regularizer=regularizer)
beta_a = slim.variable('beta_a', shape=[caps_num_c], dtype=tf.float32,
initializer=tf.constant_initializer(0.0),#tf.truncated_normal_initializer(mean=0.0, stddev=0.01),
regularizer=regularizer)
# votes_in = tf.stop_gradient(votes, name='stop_gradient_votes')
# activation_in = tf.stop_gradient(activation, name='stop_gradient_activation')
votes_in = votes
activation_in = activation
tf.logging.info('A-in: {}'.format(activation_in.get_shape()))
for iters in range(cfg.iter_routing):
# if iters == cfg.iter_routing-1:
# e-step
if iters == 0:
r = tf.constant(np.ones([batch_size, caps_num_i, caps_num_c], dtype=np.float32) / caps_num_c)
else:
# Contributor: Yunzhi Shi
# log and exp here provide higher numerical stability especially for bigger number of iterations
log_p_c_h = -tf.log(tf.sqrt(sigma_square)) - \
(tf.square(votes_in - miu) / (2 * sigma_square))
log_p_c_h = log_p_c_h - \
(tf.reduce_max(log_p_c_h, axis=[2, 3], keep_dims=True) - tf.log(10.0))
p_c = tf.exp(tf.reduce_sum(log_p_c_h, axis=3))
ap = p_c * tf.reshape(activation_out, shape=[batch_size, 1, caps_num_c])
# ap = tf.reshape(activation_out, shape=[batch_size, 1, caps_num_c])
r = ap / (tf.reduce_sum(ap, axis=2, keep_dims=True) + cfg.epsilon)
# m-step
r = r * activation_in
tf.logging.info('Rij: {}'.format(r.get_shape()))
r = r / (tf.reduce_sum(r, axis=2, keep_dims=True)+cfg.epsilon)
tf.logging.info('Rij_reduced: {}'.format(r.get_shape()))
r_sum = tf.reduce_sum(r, axis=1, keep_dims=True)
r1 = tf.reshape(r / (r_sum + cfg.epsilon),
shape=[batch_size, caps_num_i, caps_num_c, 1])
miu = tf.reduce_sum(votes_in * r1, axis=1, keep_dims=True)
sigma_square = tf.reduce_sum(tf.square(votes_in - miu) * r1,
axis=1, keep_dims=True) + cfg.epsilon
tf.logging.info('Myooh: {}'.format(miu.get_shape()))
tf.logging.info('Sigma: {}'.format(sigma_square.get_shape()))
if iters == cfg.iter_routing-1:
r_sum = tf.reshape(r_sum, [batch_size, caps_num_c, 1])
cost_h = (beta_v + tf.log(tf.sqrt(tf.reshape(sigma_square,
shape=[batch_size, caps_num_c, n_channels])))) * r_sum
tf.logging.info('Cost: {}'.format(cost_h.get_shape()))
activation_out = tf.nn.softmax(cfg.ac_lambda0 * (beta_a - tf.reduce_sum(cost_h, axis=2)))
tf.logging.info('A-out: {}'.format(activation_out.get_shape()))
else:
activation_out = tf.nn.softmax(r_sum)
# if iters <= cfg.iter_routing-1:
# activation_out = tf.stop_gradient(activation_out, name='stop_gradient_activation')
return miu, activation_out, test