-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_histogram.py
112 lines (91 loc) · 4.65 KB
/
test_histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""
License: Apache-2.0
Author: Suofei Zhang | Hang Yu
E-mail: zhangsuofei at njupt.edu.cn | hangyu5 at illinois.edu
"""
import tensorflow as tf
from config import cfg, get_coord_add, get_dataset_size_train, get_dataset_size_test, get_num_classes, get_create_inputs
import time
import os
import capsnet_em as net
import tensorflow.contrib.slim as slim
from data.smallNORB import plot_imgs
import logging
import daiquiri
daiquiri.setup(level=logging.DEBUG)
logger = daiquiri.getLogger(__name__)
def main(args):
"""Get dataset hyperparameters."""
assert len(args) == 3 and isinstance(args[1], str) and isinstance(args[2], str)
dataset_name = args[1]
model_name = args[2]
"""Set reproduciable random seed"""
tf.set_random_seed(1234)
coord_add = get_coord_add(dataset_name)
dataset_size_train = get_dataset_size_train(dataset_name)
dataset_size_test = get_dataset_size_test(dataset_name)
num_classes = get_num_classes(dataset_name)
create_inputs = get_create_inputs(
dataset_name, is_train=False, epochs=cfg.epoch)
with tf.Graph().as_default():
num_batches_per_epoch_train = int(dataset_size_train / cfg.batch_size)
num_batches_test = 2 # int(dataset_size_test / cfg.batch_size * 0.1)
batch_x, batch_labels = create_inputs()
batch_squash = tf.divide(batch_x, 255.)
batch_x_norm = slim.batch_norm(batch_x, center=False, is_training=False, trainable=False)
output, pose_out = net.build_arch(batch_x_norm, coord_add,
is_train=False, num_classes=num_classes)
tf.logging.debug(pose_out.get_shape())
batch_acc = net.test_accuracy(output, batch_labels)
m_op = tf.constant(0.9)
loss, spread_loss, mse, recon_img_squash = net.spread_loss(
output, pose_out, batch_squash, batch_labels, m_op)
tf.summary.scalar('spread_loss', spread_loss)
tf.summary.scalar('reconstruction_loss', mse)
tf.summary.scalar('all_loss', loss)
data_size = int(batch_x.get_shape()[1])
recon_img = tf.multiply(tf.reshape(recon_img_squash, shape=[
cfg.batch_size, data_size, data_size, 1]), 255.)
orig_img = tf.reshape(batch_x, shape=[
cfg.batch_size, data_size, data_size, 1])
tf.summary.image('orig_image', orig_img)
tf.summary.image('recon_image', recon_img)
saver = tf.train.Saver()
step = 0
tf.summary.scalar('accuracy', batch_acc)
summary_op = tf.summary.merge_all()
with tf.Session(config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)) as sess:
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
if not os.path.exists(cfg.test_logdir + '/{}/{}/'.format(model_name, dataset_name)):
os.makedirs(cfg.test_logdir + '/{}/{}/'.format(model_name, dataset_name))
summary_writer = tf.summary.FileWriter(
cfg.test_logdir + '/{}/{}/'.format(model_name, dataset_name), graph=sess.graph) # graph=sess.graph, huge!
files = os.listdir(cfg.logdir + '/{}/{}/'.format(model_name, dataset_name))
for epoch in range(45, 46):
# requires a regex to adapt the loss value in the file name here
ckpt_re = ".ckpt-%d" % (num_batches_per_epoch_train * epoch)
for __file in files:
if __file.endswith(ckpt_re + ".index"):
ckpt = os.path.join(
cfg.logdir + '/{}/{}/'.format(model_name, dataset_name), __file[:-6])
# ckpt = os.path.join(cfg.logdir, "model.ckpt-%d" % (num_batches_per_epoch_train * epoch))
saver.restore(sess, ckpt)
accuracy_sum = 0
for i in range(num_batches_test):
batch_acc_v, summary_str, orig_image, recon_image = sess.run(
[batch_acc, summary_op, orig_img, recon_img])
print('%d batches are tested.' % step)
summary_writer.add_summary(summary_str, step)
accuracy_sum += batch_acc_v
step += 1
# display original/reconstructed images in matplotlib
plot_imgs(orig_image, i, 'ori')
plot_imgs(recon_image, i, 'rec')
ave_acc = accuracy_sum / num_batches_test
print('the average accuracy is %f' % ave_acc)
if __name__ == "__main__":
tf.app.run()