-
Notifications
You must be signed in to change notification settings - Fork 35
/
index.js
89 lines (80 loc) · 2.54 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
var wgs84 = require('wgs84');
module.exports.geometry = geometry;
module.exports.ring = ringArea;
function geometry(_) {
var area = 0, i;
switch (_.type) {
case 'Polygon':
return polygonArea(_.coordinates);
case 'MultiPolygon':
for (i = 0; i < _.coordinates.length; i++) {
area += polygonArea(_.coordinates[i]);
}
return area;
case 'Point':
case 'MultiPoint':
case 'LineString':
case 'MultiLineString':
return 0;
case 'GeometryCollection':
for (i = 0; i < _.geometries.length; i++) {
area += geometry(_.geometries[i]);
}
return area;
}
}
function polygonArea(coords) {
var area = 0;
if (coords && coords.length > 0) {
area += Math.abs(ringArea(coords[0]));
for (var i = 1; i < coords.length; i++) {
area -= Math.abs(ringArea(coords[i]));
}
}
return area;
}
/**
* Calculate the approximate area of the polygon were it projected onto
* the earth. Note that this area will be positive if ring is oriented
* clockwise, otherwise it will be negative.
*
* Reference:
* Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for
* Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion
* Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409
*
* Returns:
* {float} The approximate signed geodesic area of the polygon in square
* meters.
*/
function ringArea(coords) {
var p1, p2, p3, lowerIndex, middleIndex, upperIndex,
area = 0,
coordsLength = coords.length;
if (coordsLength > 2) {
for (i = 0; i < coordsLength; i++) {
if (i === coordsLength - 2) {// i = N-2
lowerIndex = coordsLength - 2;
middleIndex = coordsLength -1;
upperIndex = 0;
} else if (i === coordsLength - 1) {// i = N-1
lowerIndex = coordsLength - 1;
middleIndex = 0;
upperIndex = 1;
} else { // i = 0 to N-3
lowerIndex = i;
middleIndex = i+1;
upperIndex = i+2;
}
p1 = coords[lowerIndex];
p2 = coords[middleIndex];
p3 = coords[upperIndex];
area += ( rad(p3[0]) - rad(p1[0]) ) * Math.sin( rad(p2[1]));
}
area = area * wgs84.RADIUS * wgs84.RADIUS / 2;
}
return area;
}
function rad(_) {
return _ * Math.PI / 180;
}