Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Negative dimension size for 'pool2/MaxPool' (op: 'MaxPool') with input shapes:[?,1,112,128]. #59

Open
SANTO-P opened this issue Jun 21, 2018 · 0 comments

Comments

@SANTO-P
Copy link

SANTO-P commented Jun 21, 2018

Converting model...
[name: "data"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 3
dim: 224
dim: 224
}
}
, name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
, name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
, name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
, name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
, name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
, name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
, name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
, name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
, name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
, name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
, name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
, name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
, name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
, name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
, name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
, name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
, name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
, name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
, name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
, name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
, name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
, name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
, name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
, name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
}
, name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
, name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
, name: "fc8_softlabel"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_softlabel"
inner_product_param {
num_output: 20
}
, name: "softmax"
type: "Softmax"
bottom: "fc8_softlabel"
top: "fc8_softlabel"
, name: "fc8_landmarks"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_landmarks"
inner_product_param {
num_output: 12
}
, name: "fc8_visibility_1"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_1"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_2"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_2"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_3"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_3"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_4"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_4"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_5"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_5"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_6"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_6"
inner_product_param {
num_output: 3
}
, name: "fc8"
type: "Concat"
bottom: "fc8_landmarks"
bottom: "fc8_visibility_1"
bottom: "fc8_visibility_2"
bottom: "fc8_visibility_3"
bottom: "fc8_visibility_4"
bottom: "fc8_visibility_5"
bottom: "fc8_visibility_6"
top: "fc8"
]
CREATING MODEL
Traceback (most recent call last):
File "caffe2keras.py", line 49, in
main(arguments)
File "caffe2keras.py", line 35, in main
debug=args.debug)
File "/root/santosh/try/keras/keras/caffe/convert.py", line 44, in caffe_to_keras
tuple(input_dim[1:]), debug)
File "/root/santosh/try/keras/keras/caffe/convert.py", line 320, in create_model
padding=border_mode, name=name)(input_layers)
File "/root/santosh/try/keras/keras/engine/base_layer.py", line 460, in call
output = self.call(inputs, **kwargs)
File "/root/santosh/try/keras/keras/layers/pooling.py", line 158, in call
data_format=self.data_format)
File "/root/santosh/try/keras/keras/layers/pooling.py", line 221, in _pooling_function
pool_mode='max')
File "/root/santosh/try/keras/keras/backend/tensorflow_backend.py", line 4210, in pool2d
data_format=tf_data_format)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/nn_ops.py", line 2142, in max_pool
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 4604, in max_pool
data_format=data_format, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3392, in create_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1734, in init
control_input_ops)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1570, in _create_c_op
raise ValueError(str(e))
ValueError: Negative dimension size caused by subtracting 2 from 1 for 'pool2/MaxPool' (op: 'MaxPool') with input shapes: [?,1,112,128].

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant