We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Converting model... [name: "data" type: "Input" top: "data" input_param { shape { dim: 1 dim: 3 dim: 224 dim: 224 } } , name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" convolution_param { num_output: 64 pad: 1 kernel_size: 3 } , name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" , name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" convolution_param { num_output: 64 pad: 1 kernel_size: 3 } , name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" , name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } , name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" convolution_param { num_output: 128 pad: 1 kernel_size: 3 } , name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" , name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" convolution_param { num_output: 128 pad: 1 kernel_size: 3 } , name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" , name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } , name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" convolution_param { num_output: 256 pad: 1 kernel_size: 3 } , name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" , name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" convolution_param { num_output: 256 pad: 1 kernel_size: 3 } , name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" , name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" convolution_param { num_output: 256 pad: 1 kernel_size: 3 } , name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" , name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } , name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" convolution_param { num_output: 512 pad: 1 kernel_size: 3 } , name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" , name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" convolution_param { num_output: 512 pad: 1 kernel_size: 3 } , name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" , name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" convolution_param { num_output: 512 pad: 1 kernel_size: 3 } , name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" , name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } , name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" convolution_param { num_output: 512 pad: 1 kernel_size: 3 } , name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" , name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" convolution_param { num_output: 512 pad: 1 kernel_size: 3 } , name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" , name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" convolution_param { num_output: 512 pad: 1 kernel_size: 3 } , name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" , name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 2 stride: 2 } , name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" inner_product_param { num_output: 4096 } , name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" , name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 } , name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" inner_product_param { num_output: 4096 } , name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" , name: "drop7" type: "Dropout" bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 } , name: "fc8_softlabel" type: "InnerProduct" bottom: "fc7" top: "fc8_softlabel" inner_product_param { num_output: 20 } , name: "softmax" type: "Softmax" bottom: "fc8_softlabel" top: "fc8_softlabel" , name: "fc8_landmarks" type: "InnerProduct" bottom: "fc7" top: "fc8_landmarks" inner_product_param { num_output: 12 } , name: "fc8_visibility_1" type: "InnerProduct" bottom: "fc7" top: "fc8_visibility_1" inner_product_param { num_output: 3 } , name: "fc8_visibility_2" type: "InnerProduct" bottom: "fc7" top: "fc8_visibility_2" inner_product_param { num_output: 3 } , name: "fc8_visibility_3" type: "InnerProduct" bottom: "fc7" top: "fc8_visibility_3" inner_product_param { num_output: 3 } , name: "fc8_visibility_4" type: "InnerProduct" bottom: "fc7" top: "fc8_visibility_4" inner_product_param { num_output: 3 } , name: "fc8_visibility_5" type: "InnerProduct" bottom: "fc7" top: "fc8_visibility_5" inner_product_param { num_output: 3 } , name: "fc8_visibility_6" type: "InnerProduct" bottom: "fc7" top: "fc8_visibility_6" inner_product_param { num_output: 3 } , name: "fc8" type: "Concat" bottom: "fc8_landmarks" bottom: "fc8_visibility_1" bottom: "fc8_visibility_2" bottom: "fc8_visibility_3" bottom: "fc8_visibility_4" bottom: "fc8_visibility_5" bottom: "fc8_visibility_6" top: "fc8" ] CREATING MODEL Traceback (most recent call last): File "caffe2keras.py", line 49, in main(arguments) File "caffe2keras.py", line 35, in main debug=args.debug) File "/root/santosh/try/keras/keras/caffe/convert.py", line 44, in caffe_to_keras tuple(input_dim[1:]), debug) File "/root/santosh/try/keras/keras/caffe/convert.py", line 320, in create_model padding=border_mode, name=name)(input_layers) File "/root/santosh/try/keras/keras/engine/base_layer.py", line 460, in call output = self.call(inputs, **kwargs) File "/root/santosh/try/keras/keras/layers/pooling.py", line 158, in call data_format=self.data_format) File "/root/santosh/try/keras/keras/layers/pooling.py", line 221, in _pooling_function pool_mode='max') File "/root/santosh/try/keras/keras/backend/tensorflow_backend.py", line 4210, in pool2d data_format=tf_data_format) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/nn_ops.py", line 2142, in max_pool name=name) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 4604, in max_pool data_format=data_format, name=name) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3392, in create_op op_def=op_def) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1734, in init control_input_ops) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1570, in _create_c_op raise ValueError(str(e)) ValueError: Negative dimension size caused by subtracting 2 from 1 for 'pool2/MaxPool' (op: 'MaxPool') with input shapes: [?,1,112,128].
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Converting model...
[name: "data"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 3
dim: 224
dim: 224
}
}
, name: "conv1_1"
type: "Convolution"
bottom: "data"
top: "conv1_1"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
, name: "relu1_1"
type: "ReLU"
bottom: "conv1_1"
top: "conv1_1"
, name: "conv1_2"
type: "Convolution"
bottom: "conv1_1"
top: "conv1_2"
convolution_param {
num_output: 64
pad: 1
kernel_size: 3
}
, name: "relu1_2"
type: "ReLU"
bottom: "conv1_2"
top: "conv1_2"
, name: "pool1"
type: "Pooling"
bottom: "conv1_2"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv2_1"
type: "Convolution"
bottom: "pool1"
top: "conv2_1"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
, name: "relu2_1"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
, name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
}
, name: "relu2_2"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
, name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
, name: "relu3_1"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
, name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
, name: "relu3_2"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
, name: "conv3_3"
type: "Convolution"
bottom: "conv3_2"
top: "conv3_3"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
}
, name: "relu3_3"
type: "ReLU"
bottom: "conv3_3"
top: "conv3_3"
, name: "pool3"
type: "Pooling"
bottom: "conv3_3"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv4_1"
type: "Convolution"
bottom: "pool3"
top: "conv4_1"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu4_1"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
, name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu4_2"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
, name: "conv4_3"
type: "Convolution"
bottom: "conv4_2"
top: "conv4_3"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu4_3"
type: "ReLU"
bottom: "conv4_3"
top: "conv4_3"
, name: "pool4"
type: "Pooling"
bottom: "conv4_3"
top: "pool4"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "conv5_1"
type: "Convolution"
bottom: "pool4"
top: "conv5_1"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu5_1"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
, name: "conv5_2"
type: "Convolution"
bottom: "conv5_1"
top: "conv5_2"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu5_2"
type: "ReLU"
bottom: "conv5_2"
top: "conv5_2"
, name: "conv5_3"
type: "Convolution"
bottom: "conv5_2"
top: "conv5_3"
convolution_param {
num_output: 512
pad: 1
kernel_size: 3
}
, name: "relu5_3"
type: "ReLU"
bottom: "conv5_3"
top: "conv5_3"
, name: "pool5"
type: "Pooling"
bottom: "conv5_3"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
, name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
, name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
, name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
, name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
}
, name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
, name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
, name: "fc8_softlabel"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_softlabel"
inner_product_param {
num_output: 20
}
, name: "softmax"
type: "Softmax"
bottom: "fc8_softlabel"
top: "fc8_softlabel"
, name: "fc8_landmarks"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_landmarks"
inner_product_param {
num_output: 12
}
, name: "fc8_visibility_1"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_1"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_2"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_2"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_3"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_3"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_4"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_4"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_5"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_5"
inner_product_param {
num_output: 3
}
, name: "fc8_visibility_6"
type: "InnerProduct"
bottom: "fc7"
top: "fc8_visibility_6"
inner_product_param {
num_output: 3
}
, name: "fc8"
type: "Concat"
bottom: "fc8_landmarks"
bottom: "fc8_visibility_1"
bottom: "fc8_visibility_2"
bottom: "fc8_visibility_3"
bottom: "fc8_visibility_4"
bottom: "fc8_visibility_5"
bottom: "fc8_visibility_6"
top: "fc8"
]
CREATING MODEL
Traceback (most recent call last):
File "caffe2keras.py", line 49, in
main(arguments)
File "caffe2keras.py", line 35, in main
debug=args.debug)
File "/root/santosh/try/keras/keras/caffe/convert.py", line 44, in caffe_to_keras
tuple(input_dim[1:]), debug)
File "/root/santosh/try/keras/keras/caffe/convert.py", line 320, in create_model
padding=border_mode, name=name)(input_layers)
File "/root/santosh/try/keras/keras/engine/base_layer.py", line 460, in call
output = self.call(inputs, **kwargs)
File "/root/santosh/try/keras/keras/layers/pooling.py", line 158, in call
data_format=self.data_format)
File "/root/santosh/try/keras/keras/layers/pooling.py", line 221, in _pooling_function
pool_mode='max')
File "/root/santosh/try/keras/keras/backend/tensorflow_backend.py", line 4210, in pool2d
data_format=tf_data_format)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/nn_ops.py", line 2142, in max_pool
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 4604, in max_pool
data_format=data_format, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3392, in create_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1734, in init
control_input_ops)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1570, in _create_c_op
raise ValueError(str(e))
ValueError: Negative dimension size caused by subtracting 2 from 1 for 'pool2/MaxPool' (op: 'MaxPool') with input shapes: [?,1,112,128].
The text was updated successfully, but these errors were encountered: