-
Notifications
You must be signed in to change notification settings - Fork 26
/
evaluator.py
320 lines (263 loc) · 13.7 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import sys
import numpy as np
from nltk import sent_tokenize
from metric.scorer import UniEvaluator
sys.path.append("..")
from utils import add_question, print_scores
class SumEvaluator:
def __init__(self, max_length=1024, device='cuda:0', cache_dir=None):
""" Set up evaluator for text summarization """
self.scorer = UniEvaluator(model_name_or_path='MingZhong/unieval-sum',
max_length=max_length,
device=device, cache_dir=cache_dir)
self.task = 'summarization'
self.dimensions = ['coherence', 'consistency', 'fluency', 'relevance']
def evaluate(self, data, dims=None, overall=True, print_result=False):
"""
Get the scores of all the given dimensions
dims: A list of dimensions to be evaluated. If dims is None, SumEvaluator will evaluate
four dimensions: coherence, consistency, fluency, relevance.
overall: indicates whether the overall score is to be calculated.
Overall score can be customized to a combination of scores based on different
dimensions. The default here is the average score of all the given dimensions.
print_result: whether to print the average score of each dimension on the screen
"""
n_data = len(data)
eval_scores = [{} for _ in range(n_data)]
if dims == None:
eval_dims = self.dimensions
else:
assert isinstance(dims, list)
eval_dims = dims
for dim in eval_dims:
print('Evaluating {} of {} samples !!!'.format(dim, n_data))
# Calculate average sentence-level scores for 'consistency' and 'fluency'
if dim == 'consistency' or dim == 'fluency':
src_list, output_list = [], []
n_sents = [] # the number of sentences in each generated summary
for i in range(n_data):
if dim == 'consistency':
source = data[i]['source']
else:
source = ''
system_outputs = sent_tokenize(data[i]['system_output'])
n_sents.append(len(system_outputs))
for j in range(len(system_outputs)):
src_list.append(source)
output_list.append(system_outputs[j])
input_list = add_question(dimension=dim, output=output_list,
src=src_list, task=self.task)
sent_score = self.scorer.score(input_list)
# Get average score for each sample
start_idx = 0
score = []
for cur_n_sent in n_sents:
score.append(sum(sent_score[start_idx: start_idx + cur_n_sent]) / cur_n_sent)
start_idx += cur_n_sent
# Calculate summary-level score for 'coherence' and 'relevance'
elif dim == 'coherence' or dim == 'relevance':
src_list, output_list, ref_list = [], [], []
for i in range(n_data):
src_list.append(data[i]['source'])
output_list.append(data[i]['system_output'])
if dim == 'relevance':
ref_list.append(data[i]['reference'])
input_list = add_question(dimension=dim, output=output_list,
src=src_list, ref=ref_list, task=self.task)
score = self.scorer.score(input_list)
# Please customize other dimensions here for summarization
else:
raise NotImplementedError('The input format for this dimension is still undefined. \
Please customize it first.')
for i in range(n_data):
eval_scores[i][dim] = score[i]
# Customize your overall score here.
if overall == True:
for i in range(n_data):
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
if print_result == True:
print_scores(eval_scores)
return eval_scores
class DialogEvaluator:
def __init__(self, max_length=1024, device='cuda:0', cache_dir=None):
""" Set up evaluator for dialogues """
self.scorer = UniEvaluator(model_name_or_path='MingZhong/unieval-dialog',
max_length=max_length,
device=device, cache_dir=cache_dir)
self.task = 'dialogue'
self.dimensions = ['naturalness', 'coherence', 'engagingness',
'groundedness', 'understandability']
def evaluate(self, data, dims=None, overall=True, print_result=False):
"""
Get the scores of all the given dimensions
dims: A list of dimensions to be evaluated. If dims is None, DialogEvaluator will evaluate
five dimensions: naturalness, coherence, engagingness, groundedness and understandability.
overall: indicates whether the overall score is to be calculated.
Overall score can be customized to a combination of scores based on different
dimensions. The default here is the average score of all the given dimensions.
print_result: whether to print the average score of each dimension on the screen
"""
n_data = len(data)
eval_scores = [{} for _ in range(n_data)]
if dims == None:
eval_dims = self.dimensions
else:
assert isinstance(dims, list)
eval_dims = dims
for dim in eval_dims:
print('Evaluating {} of {} samples !!!'.format(dim, n_data))
# Calculate summation score for 'engagingness'
if dim == 'engagingness':
src_list, output_list, context_list = [], [], []
n_sents = [] # the number of sentences in each generated response
for i in range(n_data):
source = data[i]['source']
context = data[i]['context']
system_outputs = sent_tokenize(data[i]['system_output'])
n_sents.append(len(system_outputs))
for j in range(len(system_outputs)):
src_list.append(source)
context_list.append(context)
output_list.append(system_outputs[j])
input_list = add_question(dimension=dim, output=output_list,
src=src_list, context=context_list, task=self.task)
sent_score = self.scorer.score(input_list)
# Get the summation score for each sample
start_idx = 0
score = []
for cur_n_sent in n_sents:
score.append(sum(sent_score[start_idx: start_idx + cur_n_sent]))
start_idx += cur_n_sent
# Calculate turn-level score for other dimensions
elif dim in ['naturalness', 'coherence', 'groundedness', 'understandability']:
src_list, output_list, context_list = [], [], []
for i in range(n_data):
if dim == 'coherence':
src_list.append(data[i]['source'])
else:
src_list.append('')
output_list.append(data[i]['system_output'])
if dim == 'groundedness':
context_list.append(data[i]['context'])
else:
context_list.append('')
input_list = add_question(dimension=dim, output=output_list,
src=src_list, context=context_list, task=self.task)
score = self.scorer.score(input_list)
# Please customize other dimensions here for summarization
else:
raise NotImplementedError('The input format for this dimension is still undefined. \
Please customize it first.')
for i in range(n_data):
eval_scores[i][dim] = score[i]
# Customize your overall score here.
if overall == True:
for i in range(n_data):
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
if print_result == True:
print_scores(eval_scores)
return eval_scores
class D2tEvaluator:
def __init__(self, max_length=1024, device='cuda:0', cache_dir=None):
""" Set up evaluator for data-to-text """
self.scorer = UniEvaluator(model_name_or_path='MingZhong/unieval-sum',
max_length=max_length,
device=device, cache_dir=cache_dir)
self.task = 'data2text'
self.dimensions = ['naturalness', 'informativeness']
def evaluate(self, data, dims=None, overall=True, print_result=False):
"""
Get the scores of all the given dimensions
dims: A list of dimensions to be evaluated. If dims is None, D2tEvaluator will evaluate
two dimensions: naturalness and informativeness.
overall: indicates whether the overall score is to be calculated.
Overall score can be customized to a combination of scores based on different
dimensions. The default here is the average score of all the given dimensions.
print_result: whether to print the average score of each dimension on the screen
"""
n_data = len(data)
eval_scores = [{} for _ in range(n_data)]
if dims == None:
eval_dims = self.dimensions
else:
assert isinstance(dims, list)
eval_dims = dims
for dim in eval_dims:
print('Evaluating {} of {} samples !!!'.format(dim, n_data))
output_list, ref_list = [], []
for i in range(n_data):
output_list.append(data[i]['system_output'])
ref_list.append(data[i]['reference'])
input_list = add_question(dimension=dim, output=output_list,
ref=ref_list, task=self.task)
score = self.scorer.score(input_list)
for i in range(n_data):
eval_scores[i][dim] = score[i]
# Customize your overall score here.
if overall == True:
for i in range(n_data):
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
if print_result == True:
print_scores(eval_scores)
return eval_scores
class FactEvaluator:
def __init__(self, max_length=1024, device='cuda:0', cache_dir=None):
""" Set up evaluator for factual consistency detection """
self.scorer = UniEvaluator(model_name_or_path='MingZhong/unieval-fact',
max_length=max_length,
device=device, cache_dir=cache_dir)
self.task = 'fact'
self.dim = 'consistency'
def evaluate(self, data, print_result=False):
"""
Get the factual consistency score (only 1 dimension for this task)
print_result: whether to print the average factual score on the screen
"""
n_data = len(data)
eval_scores = [{} for _ in range(n_data)]
print('Evaluating {} of {} samples !!!'.format(self.dim, n_data))
# Calculate average sentence-level scores for facutal consistency
src_list, output_list = [], []
n_sents = [] # the number of sentences in the claim
for i in range(n_data):
source = data[i]['source']
system_outputs = sent_tokenize(data[i]['system_output'])
n_sents.append(len(system_outputs))
for j in range(len(system_outputs)):
src_list.append(source)
output_list.append(system_outputs[j])
input_list = add_question(dimension=self.dim, output=output_list,
src=src_list, task=self.task)
sent_score = self.scorer.score(input_list)
# Get average score for each sample
start_idx = 0
score = []
for cur_n_sent in n_sents:
score.append(sum(sent_score[start_idx: start_idx + cur_n_sent]) / cur_n_sent)
start_idx += cur_n_sent
for i in range(n_data):
eval_scores[i][self.dim] = score[i]
if print_result == True:
print_scores(eval_scores)
return eval_scores
def get_evaluator(task, max_length=1024, device='cuda:0', cache_dir=None):
assert task in ['summarization', 'dialogue', 'data2text', 'fact']
if task == 'summarization':
return SumEvaluator(max_length=max_length,
device=device,
cache_dir=cache_dir)
elif task == 'dialogue':
return DialogEvaluator(max_length=max_length,
device=device,
cache_dir=cache_dir)
elif task == 'data2text':
return D2tEvaluator(max_length=max_length,
device=device,
cache_dir=cache_dir)
elif task == 'fact':
return FactEvaluator(max_length=max_length,
device=device,
cache_dir=cache_dir)
else:
raise NotImplementedError('Other tasks are not implemented, \
please customize specific tasks here.')