forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndexIVFPQ.h
161 lines (117 loc) · 5.02 KB
/
IndexIVFPQ.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#ifndef FAISS_INDEX_IVFPQ_H
#define FAISS_INDEX_IVFPQ_H
#include <vector>
#include <faiss/IndexIVF.h>
#include <faiss/IndexPQ.h>
namespace faiss {
struct IVFPQSearchParameters: IVFSearchParameters {
size_t scan_table_threshold; ///< use table computation or on-the-fly?
int polysemous_ht; ///< Hamming thresh for polysemous filtering
~IVFPQSearchParameters () {}
};
/** Inverted file with Product Quantizer encoding. Each residual
* vector is encoded as a product quantizer code.
*/
struct IndexIVFPQ: IndexIVF {
bool by_residual; ///< Encode residual or plain vector?
ProductQuantizer pq; ///< produces the codes
bool do_polysemous_training; ///< reorder PQ centroids after training?
PolysemousTraining *polysemous_training; ///< if NULL, use default
// search-time parameters
size_t scan_table_threshold; ///< use table computation or on-the-fly?
int polysemous_ht; ///< Hamming thresh for polysemous filtering
/** Precompute table that speed up query preprocessing at some
* memory cost
* =-1: force disable
* =0: decide heuristically (default: use tables only if they are
* < precomputed_tables_max_bytes)
* =1: tables that work for all quantizers (size 256 * nlist * M)
* =2: specific version for MultiIndexQuantizer (much more compact)
*/
int use_precomputed_table; ///< if by_residual, build precompute tables
static size_t precomputed_table_max_bytes;
/// if use_precompute_table
/// size nlist * pq.M * pq.ksub
std::vector <float> precomputed_table;
IndexIVFPQ (
Index * quantizer, size_t d, size_t nlist,
size_t M, size_t nbits_per_idx);
void add_with_ids(idx_t n, const float* x, const idx_t* xids = nullptr)
override;
void encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes,
bool include_listnos = false) const override;
void sa_decode (idx_t n, const uint8_t *bytes,
float *x) const override;
/// same as add_core, also:
/// - output 2nd level residuals if residuals_2 != NULL
/// - use precomputed list numbers if precomputed_idx != NULL
void add_core_o (idx_t n, const float *x,
const idx_t *xids, float *residuals_2,
const idx_t *precomputed_idx = nullptr);
/// trains the product quantizer
void train_residual(idx_t n, const float* x) override;
/// same as train_residual, also output 2nd level residuals
void train_residual_o (idx_t n, const float *x, float *residuals_2);
void reconstruct_from_offset (int64_t list_no, int64_t offset,
float* recons) const override;
/** Find exact duplicates in the dataset.
*
* the duplicates are returned in pre-allocated arrays (see the
* max sizes).
*
* @params lims limits between groups of duplicates
* (max size ntotal / 2 + 1)
* @params ids ids[lims[i]] : ids[lims[i+1]-1] is a group of
* duplicates (max size ntotal)
* @return n number of groups found
*/
size_t find_duplicates (idx_t *ids, size_t *lims) const;
// map a vector to a binary code knowning the index
void encode (idx_t key, const float * x, uint8_t * code) const;
/** Encode multiple vectors
*
* @param n nb vectors to encode
* @param keys posting list ids for those vectors (size n)
* @param x vectors (size n * d)
* @param codes output codes (size n * code_size)
* @param compute_keys if false, assume keys are precomputed,
* otherwise compute them
*/
void encode_multiple (size_t n, idx_t *keys,
const float * x, uint8_t * codes,
bool compute_keys = false) const;
/// inverse of encode_multiple
void decode_multiple (size_t n, const idx_t *keys,
const uint8_t * xcodes, float * x) const;
InvertedListScanner *get_InvertedListScanner (bool store_pairs)
const override;
/// build precomputed table
void precompute_table ();
IndexIVFPQ ();
};
/// statistics are robust to internal threading, but not if
/// IndexIVFPQ::search_preassigned is called by multiple threads
struct IndexIVFPQStats {
size_t nrefine; // nb of refines (IVFPQR)
size_t n_hamming_pass;
// nb of passed Hamming distance tests (for polysemous)
// timings measured with the CPU RTC
// on all threads
size_t search_cycles;
size_t refine_cycles; // only for IVFPQR
IndexIVFPQStats () {reset (); }
void reset ();
};
// global var that collects them all
extern IndexIVFPQStats indexIVFPQ_stats;
} // namespace faiss
#endif