-
Notifications
You must be signed in to change notification settings - Fork 40
/
test-model2.py
103 lines (81 loc) · 3.23 KB
/
test-model2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python
from __future__ import division
import tensorflow as tf
import params
model = __import__(params.model)
import cv2
import subprocess as sp
import itertools
import sys
import os
import preprocess
# import visualize
import time
import math
import numpy as np
import local_common as cm
def deg2rad(deg):
return deg * math.pi / 180.0
def rad2deg(rad):
return 180.0 * rad / math.pi
NCPU=int(sys.argv[1])
config = tf.ConfigProto(intra_op_parallelism_threads=NCPU, inter_op_parallelism_threads=NCPU, \
allow_soft_placement=True, device_count = {'CPU': 1})
# sess = tf.Session(config=config)
NFRAMES = 1000
sess = tf.InteractiveSession(config=config)
saver = tf.train.Saver()
model_load_path = cm.jn(params.save_dir, params.model_load_file2)
saver.restore(sess, model_load_path)
epoch_ids = sorted(list(set(itertools.chain(*params.epochs.values()))))
epoch_ids = [6,6] # DBG - heechul
tot_time_list = []
curFrame = 0
for epoch_id in epoch_ids:
print '---------- processing video for epoch {} ----------'.format(epoch_id)
# vid_path = cm.jn(params.data_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
vid_path = cm.jn(params.data_dir, 'out-video-{}.avi'.format(epoch_id))
assert os.path.isfile(vid_path)
frame_count = cm.frame_count(vid_path)
cap = cv2.VideoCapture(vid_path)
machine_steering = []
print 'performing inference...'
time_start = time.time()
for frame_id in xrange(frame_count):
if curFrame < NFRAMES:
cam_start = time.time()
ret, img = cap.read()
assert ret
prep_start = time.time()
img = preprocess.preprocess(img)
pred_start = time.time()
rad = model.y.eval(feed_dict={model.x: [img]})[0][0]
deg = rad2deg(rad)
pred_end = time.time()
cam_time = (prep_start - cam_start)*1000
prep_time = (pred_start - prep_start)*1000
pred_time = (pred_end - pred_start)*1000
tot_time = (pred_end - cam_start)*1000
print 'pred: {:0.2f} deg. took: {:0.2f} ms | cam={:0.2f} prep={:0.2f} pred={:0.2f}'.format(deg, tot_time, cam_time, prep_time, pred_time)
# print 'pred: {} deg (rad={})'.format(deg, rad)
if frame_id > 0:
tot_time_list.append(tot_time)
machine_steering.append(deg)
curFrame += 1
cap.release()
fps = frame_count / (time.time() - time_start)
print 'completed inference, total frames: {}, average fps: {} Hz'.format(frame_count, round(fps, 1))
# print "Machine Steering:", machine_steering
# print 'performing visualization...'
# visualize.visualize(epoch_id, machine_steering, params.out_dir,
# verbose=True, frame_count_limit=None)
print "count:", len(tot_time_list)
print "mean:", np.mean(tot_time_list)
print "max:", np.max(tot_time_list)
print "99.999pct:", np.percentile(tot_time_list, 99.999)
print "99.99pct:", np.percentile(tot_time_list, 99.99)
print "99.9pct:", np.percentile(tot_time_list, 99.9)
print "99pct:", np.percentile(tot_time_list, 99)
print "min:", np.min(tot_time_list)
print "median:", np.median(tot_time_list)
print "stdev:", np.std(tot_time_list)