Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Zygote with Tullio gives wrong gradients/pullbacks using CUDA #185

Open
kc-111 opened this issue Feb 26, 2024 · 1 comment
Open

Zygote with Tullio gives wrong gradients/pullbacks using CUDA #185

kc-111 opened this issue Feb 26, 2024 · 1 comment
Labels
bug Something isn't working GPU gradient

Comments

@kc-111
Copy link

kc-111 commented Feb 26, 2024

using Tullio, Zygote, CUDA, KernelAbstractions, OMEinsum

# Show outer product of strings
A = ["x", "y", "z", "w"]
res = Array{String}(undef, length(A), length(A))
for (i, r) in enumerate(A)
    for (j, c) in enumerate(A)
        res[i, j] = string(r, c)
    end
end
display(res)

# Test outer product using einstein summation
A = rand(length(A), 100) # Last dim is batch
batchmul(A, B) = @tullio C[i,j,k] := A[i,k] * B[j,k]
# batchmul(A, B) = ein"ik,jk->ijk"(A, B)
outer_prod(A, B) = reshape(batchmul(A, B), size(A, 1)*size(B, 1), size(A, 2))
@show reshape(outer_prod(A, A), 4, 4, :) == batchmul(A, A)
(loss,), back = pullback(p -> sum(outer_prod(p, p)), A)
gs = back((one(loss)))[1]
display(gs)

# Cuda
A_cu = CuArray(Float32.(A))
(loss,), back = pullback(p -> sum(outer_prod(p, p)), A_cu)
gs = back((one(loss)))[1]
display(gs)

Using OMEinsum with CUDA gives consistent and correct results.
Problem: The pullback gives different results when I use CUDA with Tullio.
Discourse Discussion: https://discourse.julialang.org/t/zygote-with-tullio-gives-wrong-gradients-pullbacks-using-cuda/110767

@mcabbott
Copy link
Owner

I can reproduce this, seems to be a bug. Thanks for the report! Slightly shorter version below:

julia> using Tullio, Zygote, CUDA, KernelAbstractions

julia> batchmul(A, B) = @tullio C[i,j,k] := A[i,k] * B[j,k];

julia> A = rand(Float32, 4, 2); B = rand(Float32, 4, 2);

julia> withgradient((a,b) -> sum(abs2, batchmul(a, b)), A, B)
(val = 5.032481f0, grad = (Float32[0.07354373 1.634892; 2.6971781 3.3456252; 1.6237329 3.0221555; 2.502201 1.6203384], Float32[0.99070925 2.647247; 1.6691209 0.9896178; 0.45123747 2.6089365; 1.6953326 2.0719757]))

julia> withgradient((a,b) -> sum(abs2, batchmul(a, b)), cu(A), cu(B))
(val = 5.0324807f0, grad = (Float32[0.010545072 0.6002646; 0.38673505 1.228375; 0.23281904 1.1096104; 0.35877827 0.59492123], Float32[0.00033122321 0.2761269; 0.00055803615 0.103224255; 0.00015086193 0.27213085; 0.0005667995 0.21612196]))

julia> bcmul(A, B) = reshape(A, size(A,1), 1, :) .* reshape(B, 1, size(B)...);

julia> bcmul(A, B)  batchmul(A, B)
true

julia> withgradient((a,b) -> sum(abs2, bcmul(a, b)), A, B)
(val = 5.032481f0, grad = (Float32[0.07354373 1.6348917; 2.6971781 3.3456252; 1.6237328 3.0221555; 2.502201 1.6203386], Float32[0.99070925 2.647247; 1.6691209 0.9896178; 0.45123744 2.6089365; 1.6953325 2.0719757]))

julia> withgradient((a,b) -> sum(abs2, bcmul(a, b)), cu(A), cu(B))
(val = 5.0324807f0, grad = (Float32[0.07354373 1.6348919; 2.6971781 3.345625; 1.6237328 3.0221558; 2.502201 1.6203384], Float32[0.9907092 2.647247; 1.6691209 0.9896178; 0.45123744 2.6089368; 1.6953325 2.0719757]))

If this is the function you actually need, then I stronly suggest that you write it as bcmul above, using Broadcasting not fancy packages.

@mcabbott mcabbott added bug Something isn't working GPU gradient labels Feb 26, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working GPU gradient
Projects
None yet
Development

No branches or pull requests

2 participants