-
Notifications
You must be signed in to change notification settings - Fork 1
/
driftlaw.py
732 lines (601 loc) · 33.2 KB
/
driftlaw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patheffects as PathEffects
import scipy.odr
import itertools, re
def computeModelDetails(frame, channelSpaceDuration=False):
""" Takes a dataframe and computes columns related to the triggered relativistic dynamical model from the 2d gaussian parameters found in the measurement stage.
Importantly, computes the sub-burst slope, duration, bandwidth, and uncertainties associated with these.
Can be run even if the columns this function computes already exist and can serve to recalculate or update computed values.
Args:
frame (pd.DataFrame): the results dataframe from FRBGui or :py:meth:`driftrate.processDMRange`
Returns:
pd.DataFrame: the dataframe with new computed columns
"""
frame = frame.copy()
tauwerror_expr = lambda r: 1e3*r['time_res (s)']*np.sqrt(r['max_sigma']**6*r['min_sigma_error']**2*np.cos(r['theta']-np.pi/2)**4 + r['angle_error']**2*r['max_sigma']**2*r['min_sigma']**2*(-r['max_sigma']**2 + r['min_sigma']**2)**2*np.cos(r['theta']-np.pi/2)**2*np.sin(r['theta']-np.pi/2)**2 + r['max_sigma_error']**2*r['min_sigma']**6*np.sin(r['theta']-np.pi/2)**4)/(r['max_sigma']**2*np.cos(r['theta']-np.pi/2)**2 + r['min_sigma']**2*np.sin(r['theta']-np.pi/2)**2)**1.5
frame['slope_abs'] = -1*(frame['slope (mhz/ms)']) # multiply be negative 1 because of later measurement exclusions
frame['slope_over_nuobs'] = frame[['slope_abs','center_f']].apply(lambda row: row['slope_abs'] / row['center_f'], axis=1)
frame['slope_over_nuobs_err'] = np.sqrt(frame['red_chisq'])*frame['slope error (mhz/ms)']/frame['center_f']
frame['recip_slope_over_nuobs'] = frame['center_f'] / np.tan(frame['theta']) # ms/MHz
frame['recip_norm_slope_err'] = frame['center_f']*(frame['angle_error'] * (1/np.sin(frame['theta']))**2)
frame['slope_abs_nuobssq'] = frame['slope_abs']/frame['center_f']**2/1000 # unitless
frame['min_sigma'] = frame[['sigmax','sigmay']].apply(lambda row: min(abs(row['sigmax']), abs(row['sigmay'])), axis=1)
frame['max_sigma'] = frame[['sigmax','sigmay']].apply(lambda row: max(abs(row['sigmax']), abs(row['sigmay'])), axis=1)
# the following two lines assume that if sigmax > sigmay, then sigmax_error > sigmay_error, which is true (so far) for this dataset
frame['min_sigma_error'] = frame[['sigmax_error','sigmay_error']].apply(lambda row: min(row['sigmax_error'], row['sigmay_error']), axis=1)
frame['max_sigma_error'] = frame[['sigmax_error','sigmay_error']].apply(lambda row: max(row['sigmax_error'], row['sigmay_error']), axis=1)
frame['sigma_t'] = frame[['min_sigma','time_res (s)']].apply(lambda row: row['min_sigma']*row['time_res (s)'], axis=1)
frame['tau_w_old'] = frame[['time_res (s)', 'min_sigma', 'max_sigma', 'theta']].apply(
lambda r: r['time_res (s)']*r['min_sigma']*r['max_sigma'] / np.sqrt( np.abs((np.sin(r['theta']-np.pi/2)*r['min_sigma'])**2 + (np.cos(r['theta']-np.pi/2)*r['max_sigma'])**2 )),
axis=1
)
frame['tau_w'] = frame[['min_sigma', 'max_sigma', 'theta']].apply(
lambda r: r['min_sigma']*r['max_sigma'] / np.sqrt( np.abs((np.sin(r['theta']-np.pi/2)*r['min_sigma'])**2 + (np.cos(r['theta']-np.pi/2)*r['max_sigma'])**2 )),
axis=1
)
frame['t_from_sigma'] = frame['min_sigma']*np.sin(frame['theta'])
# this error is in ms
frame['tau_w_error'] = frame[['tau_w', 'time_res (s)', 'min_sigma', 'max_sigma', 'min_sigma_error', 'max_sigma_error', 'theta', 'angle_error']].apply(
tauwerror_expr,
axis=1
)
frame['sigma_t_ms'] = frame['sigma_t']*1e3
frame['tau_w_ms'] = frame['tau_w'] # alias, units are implicit when solving in data space
frame['tau_w_ms_old'] = frame['tau_w_old']*1e3
if channelSpaceDuration: # hack to force channel space equation for old measurements
frame['tau_w_ms'] = frame['tau_w_ms_old']
frame['bandwidth (mhz)'] = abs(2*np.sqrt(2*np.log(2))*frame['max_sigma']*np.cos(frame['theta']-np.pi/2))
frame['bandwidth error (mhz)'] = abs(2*np.sqrt(2*np.log(2))*np.sqrt((frame['max_sigma_error']*np.cos(frame['theta']-np.pi/2))**2 + (frame['max_sigma']*frame['angle_error']*np.sin(frame['theta']-np.pi/2))**2))
## Redshift corrections
if 'z' in frame.index:
frame['slope_z'] = frame[['slope_over_nuobs', 'z']].apply(lambda row: row['slope_over_nuobs']*(1+row['z']), axis=1)
frame['tau_w_ms_z'] = frame[['tau_w_ms', 'z']].apply(lambda row: row['tau_w_ms']/(1+row['z']), axis=1)
return frame
def cleanAngle(row):
angle = row['angle']
if angle < 0 or angle > np.pi:
if angle > np.pi:
return angle % (np.pi)
elif angle < 0 and angle > -np.pi:
return angle + np.pi
elif angle < 0 and angle < -np.pi:
angle = angle % (2*np.pi)
if angle > np.pi:
return angle - np.pi
else:
return angle
else:
return angle
def atanmodel(B, x):
return np.arctan(x/B[0])
def offset_atanmodel(B, x, zero_ddm_fit=6.554):
return np.arctan(x/zero_ddm_fit) + B[0]
def reciprocal(x, a):
return a/x
def reciprocal_log(x, b):
return -x+b
def log_log(x, k, b):
return k*x+b
def reciprocal_odr(B, x):
return B[0]/x
def reciprocal_odr_log(B, x):
return -x+B[0]
def fitreciprocal(x, data, sigma=1):
guess = [522]
abs_sigma = True
if (type(sigma) == int) and (sigma == 1):
abs_sigma = False
sigma = np.zeros(len(data.ravel())) + sigma
popt, pcov = scipy.optimize.curve_fit(reciprocal, x, data, p0=guess, sigma=sigma, absolute_sigma=abs_sigma)
return popt, pcov
def fitreciprocal_log(x, data, sigma=1, loglog=False):
guess = [522]
abs_sigma = True
if (type(sigma) == int) and (sigma == 1):
abs_sigma = False
sigma = np.zeros(len(data.ravel())) + sigma
if loglog:
guess = [1,1]
popt, pcov = scipy.optimize.curve_fit(log_log, x, data, p0=guess, sigma=sigma, absolute_sigma=abs_sigma)
else:
popt, pcov = scipy.optimize.curve_fit(reciprocal_log, x, data, p0=guess, sigma=sigma, absolute_sigma=abs_sigma)
return popt, pcov
def modelerror(frame):
ex = np.sqrt(frame['red_chisq'])*frame['tau_w_error']
ey = np.sqrt(frame['red_chisq'])*frame['slope error (mhz/ms)']/frame['center_f']
return ex, ey
def modelerror_recip(frame):
ex = np.sqrt(frame['red_chisq'])*frame['tau_w_error']
ey = np.sqrt(frame['red_chisq'])*frame['recip_norm_slope_err']
return ex, ey
def rangeerror(frame):
"""
These ranges are not errors in the statistical sense. they are the min/max values, which should
be larger than the real errors. So this is extremely conservative while also being easier
to compute.
The strange shape of the returned value is due to a quirk in the way pandas handles asymmetric
errors.
"""
ex = [np.array([frame['tau_w_ms'] - frame['tw_min'], frame['tw_max'] - frame['tau_w_ms']])]
ey = [np.array([frame['slope_over_nuobs'] - frame['slope_nu_min'], frame['slope_nu_max'] - frame['slope_over_nuobs']])]
return ex, ey
def log_error(frame):
""" see modelerror() """
sx = np.log((frame['tau_w_ms'] + np.sqrt(frame['red_chisq'])*frame['tau_w_error']) / frame['tau_w_ms'])
sy = np.log((frame['slope_over_nuobs'] + np.sqrt(frame['red_chisq'])*(frame['slope error (mhz/ms)'])) / frame['slope_over_nuobs'])
return sx, sy
def rangelog_error(frame):
""" The range errors are asymmetric. Average the error """
ex, ey = rangeerror(frame)
ex = np.log((frame['tau_w_ms'] + (ex[0][0]+ex[0][1])/2 ) / frame['tau_w_ms'])
ey = np.log((frame['slope_over_nuobs'] + (ey[0][0]+ey[0][1])/2) / frame['slope_over_nuobs'])
return ey, ey
# return np.log(np.maximum(ex[0][0], ex[0][1])), np.log(np.maximum(ey[0][0], ey[0][1]))
def rangeerror_odr(frame):
""" The range errors are asymmetric. Take the largest error """
ex, ey = rangeerror(frame)
return np.maximum(ex[0][0], ex[0][1]), np.maximum(ey[0][0], ey[0][1])
def limitedDMrangeerror_odr(frame):
""" The range errors are asymmetric. Take the largest error """
ex, ey = limitedDMrangeerror(frame)
# return (ex[0][0]+ex[0][1])/2, (ey[0][0]+ey[0][1])/2 # return the average
return np.maximum(ex[0][0], ex[0][1]), np.maximum(ey[0][0], ey[0][1]) # larger uncertainties
def fitodr(frame, beta0=[1000], errorfunc=log_error, log=True):
fit_model = scipy.odr.Model(reciprocal_odr)
fit_model_log = scipy.odr.Model(reciprocal_odr_log)
fitdata = scipy.odr.RealData(frame['tau_w_ms'],
frame['slope_over_nuobs'],
sx=rangeerror_odr(frame)[0],
sy=rangeerror_odr(frame)[1])
fitdata_log = scipy.odr.RealData(np.log(frame['tau_w_ms']),
np.log(frame['slope_over_nuobs']),
sx=errorfunc(frame)[0],
sy=errorfunc(frame)[1])
odrfitter_log = scipy.odr.ODR(fitdata_log, fit_model_log, beta0=beta0)
odrfitter_log.set_job(fit_type=0)
odrfitter = scipy.odr.ODR(fitdata, fit_model, beta0=beta0)
odrfitter.set_job(fit_type=0)
if log:
# print('log odr')
return odrfitter_log.run()
else:
# print('linear odr')
return odrfitter.run()
def limitedDMrangeerror(frame):
ex = [np.array([frame['tau_w_ms'] - frame['lim_tw_min'], frame['lim_tw_max'] - frame['tau_w_ms']])]
ey = [np.array([frame['slope_over_nuobs'] - frame['lim_slope_nu_min'], frame['lim_slope_nu_max'] - frame['slope_over_nuobs']])]
return ex, ey
def limitedDMrangeerror_recip(frame):
ex = [np.array([frame['tau_w_ms'] - frame['lim_tw_min'], frame['lim_tw_max'] - frame['tau_w_ms']])]
ey = [np.array([np.abs(frame['recip_slope_over_nuobs'] - frame['lim_recip_max']), np.abs(frame['lim_recip_max'] - frame['recip_slope_over_nuobs'])])]
return ex, ey
def limitedDMsloperanges(fitdf, source, threshold=0):
""" Like `sloperanges` but only for DMs where all the bursts in a sample have valid measurements """
dms = fitdf.loc[fitdf.numbursts == fitdf.numbursts.max()].index
mindm, maxdm = min(dms), max(dms)
print(f">> DM range after maximizing bursts: {mindm} - {maxdm} pc/cm3")
source = source.reset_index().set_index('DM').loc[dms].reset_index().set_index('name')
# source_lim = source.reset_index().set_index('DM').loc[dms].reset_index().set_index('name')
yaxis = 'slope_over_nuobs'
xaxis = 'tau_w_ms'
baxis = 'bandwidth (mhz)'
raxis = 'recip_slope_over_nuobs'
for burst in source.index.unique():
burstdf = source.loc[burst] # s/source/source_lim
eduration = np.sqrt(burstdf['red_chisq'])*burstdf['tau_w_error']
eslopenuobs = np.sqrt(burstdf['red_chisq'])*burstdf['slope error (mhz/ms)']/burstdf['center_f']
ebandwidth = np.sqrt(burstdf['red_chisq'])*burstdf['max_sigma_error'] # ignores angle error, which should be small
erecipslope = np.sqrt(burstdf['red_chisq'])*burstdf['recip_norm_slope_err']
dmax, dmin = np.max(burstdf[yaxis] + eslopenuobs), np.min(burstdf[yaxis] - eslopenuobs)
tmax, tmin = np.max(burstdf[xaxis] + eduration) , np.min(burstdf[xaxis] - eduration)
bmax, bmin = np.max(burstdf[baxis] + ebandwidth) , np.min(burstdf[baxis] - ebandwidth)
rmax, rmin = np.max(burstdf[raxis] + erecipslope) , np.min(burstdf[raxis] - erecipslope)
source.loc[burst, 'lim_slope_nu_max'] = dmax
source.loc[burst, 'lim_slope_nu_min'] = dmin
source.loc[burst, 'lim_slope_max'] = dmax*burstdf['center_f']
source.loc[burst, 'lim_slope_min'] = dmin*burstdf['center_f']
source.loc[burst, 'lim_tw_max'] = tmax
source.loc[burst, 'lim_tw_min'] = tmin
source.loc[burst, 'lim_band_max'] = bmax
source.loc[burst, 'lim_band_min'] = bmin
source.loc[burst, 'lim_recip_max'] = rmax
source.loc[burst, 'lim_recip_min'] = rmin
return source
def sloperanges(source):
"""
Given all burst and model data at different trial DMs,
computes the range of slopes durations across the range of trial DMs
Used as part of estimating uncertainties in :py:meth:`bakeMeasurements`.
"""
yaxis = 'slope_over_nuobs'
xaxis ='tau_w_ms'
for burst in source.index.unique():
burstdf = source.loc[burst]
eduration = np.sqrt(burstdf['red_chisq'])*burstdf['tau_w_error']
eslopenuobs = np.sqrt(burstdf['red_chisq'])*burstdf['slope error (mhz/ms)']/burstdf['center_f']
dmax, dmin = np.max(burstdf[yaxis] + eslopenuobs), np.min(burstdf[yaxis] - eslopenuobs)
tmax, tmin = np.max(burstdf[xaxis] + eduration) , np.min(burstdf[xaxis] - eduration)
source.loc[burst, 'slope_nu_max'] = dmax
source.loc[burst, 'slope_nu_min'] = dmin
source.loc[burst, 'slope_max'] = dmax*burstdf['center_f']
source.loc[burst, 'slope_min'] = dmin*burstdf['center_f']
source.loc[burst, 'tw_max'] = tmax
source.loc[burst, 'tw_min'] = tmin
source.loc[burst, 'slope_nu_plus'] = burstdf[yaxis] + eslopenuobs
source.loc[burst, 'slope_nu_minus'] = burstdf[yaxis] - eslopenuobs
source.loc[burst, 'tw_plus'] = burstdf[xaxis] + eduration
source.loc[burst, 'tw_minus'] = burstdf[xaxis] - eduration
# print(f'burst: {burst},\t\tsloperange = ({dmin}, {dmax}),\t\ttwrange = ({tmin}, {tmax})')
return source
def bakeMeasurements(sources, names, exclusions, targetDMs, logging=True,
tagColors=['r', 'r', 'b', 'g', 'y', 'c', 'tomato', 'c'],
showDMtraces=False, exclude_set=None):
""" Process completed measurements performed over a range of DMs for the purposes of analysing them in the context of the triggered relativistic dynamical model (TRDM).
Performs fits of the sub-burst slope law (i.e. slope = A/duration, A is a constant) by grouping measurements by DM. Provides detailed logging information.
The logging information of this function should be carefully reviewed to ensure the science and questions you are investigating are not being affected. Reviewing the information in this function should provide insight into how your bursts as a cohort are behaving as the DM changes.
The outputs (the "baked measurements") of this function are used to produce figures of spectro-temporal properties of the measurements and explore their relationships.
Specifically:
1. Filter measurements based on uncertainties and/or unphysical values. Measurements with uncertainty greater than 40% of the measurement value are discarded. Measurements with uncertainties greater than 10^8 are discarded. Measurements where the sub-burst slope is positive are discarded due to assumed over-dedispersion. Measurements with no valid fit (negative gaussian amplitude) are excluded.
2. Color data points based on spreadsheets.
3. Finds range of fits by source.
4. Tags data that is at the target DM and splits up measurements by DM. This can be then used to plot burst measurements at a "representative" DM.
5. Compute ranges of measurements and use these as conservative uncertainty bars on plots of bursts at their representative DM.
Example usage:
.. code-block:: python
bakeddata, fitdata, sources, extradata = driftlaw.bakeMeasurements(sources, names, exclusions, targetDMs, logging=False, tagColors=tagColors)
See `here <https://github.com/mef51/SurveyFRB20121102A/blob/master/code/PaperFigures.ipynb>`_ for a (nontrivial) usage example.
Args:
sources (list[pd.DataFrame]): list of DataFrames of frbgui results spreadsheets. Spreadsheets should be complete, that is, they are the output of :py:meth:`computeModelDetails`.
names (list[str]): list of names for each dataset listed in sources. used in figures. One name per data source.
exclusions (list[list[str]]): list of bursts to exclude by name. One list per data source.
targetDMs (list[float]): Representative DM to display each burst at. One per data source. After running this function once it is a good idea to run :py:meth:`getOptimalDMs` and use that list as your representative DMs. :py:meth:`getOptimalDMs` requires the baked data so cannot be run first.
logging (bool, optional): Set to False to disable logging. Do this after you've reviewed the logging output.
tagColors (list[str], optional): list of matplotlib colors for plotting purposes. One per data source
showDMtraces (bool, optional): if True will display plots of Slope vs. duration for each burst over the DM range. Useful for looking at the change in measurements as DM varies.
Returns:
tuple: (bakeddata, fitdata, sources, extradata).
* ``bakkeddata`` is an dictionary containing "frames", "labels", and "colors". Used in :py:meth:`plotSlopeVsDuration` to produce figures of measurements at a representative DM with uncertainties estimated from the DM range used.
* ``fitdata`` is a DataFrame of the fit results (i.e. fitting slope = A/duration) at each DM and is used by :py:meth:`getOptimalDMs`. It contains the following columns and information:
.. code-block:: python
'name': # source name
'DM': # DM fit was performed at
'param': # The fit parameter to the fit A/duration
'err': # the error on A ,
'red_chisq': # the reduced chisquared,
'numbursts': # the number of bursts used, after measurement exclusions
* ``sources`` is the updated list of dataframes after measurement exclusions.
* ``extradata`` Some extra information regarding the sub-burst slope vs frequency relationship.
"""
if not (len(sources) == len(names) == len(exclusions) == len(targetDMs)):
raise ValueError(
"Sources, names, exclusions, and targetDMs are not the same length",
len(sources), len(names), len(exclusions), len(targetDMs)
)
def exclusionLogger(exclusionstr, frame):
if not logging:
return
print(exclusionstr)
count = 0
if frame.empty:
print(">> bursts excluded: \n\tnone")
else:
print('>> bursts excluded:',
*[f"\n\t{exname} DM = {row['DM']}" for exname, row in frame.iterrows()])
count += len(frame)
print(f'>> # of measurements excluded: {count}')
print(f'>> # of bursts limited: {len(frame.index.unique())}')
return count
def DMrangeLogger(sname, frame, burstwise=False):
if not logging:
return
if not burstwise:
if type(frame) == pd.core.series.Series:
print(f"{sname}\tDM Range: {frame[0]} pc/cm3")
else:
print(f"{sname}\t DM Range: {min(frame['DM'])} - {max(frame['DM'])} pc/cm3")
else:
print(f'>>> {sname} DM Range by burst:')
for bname in frame.index.unique():
DMrangeLogger(f'\tburst {bname}:', frame.loc[bname])
return
bakeddata = { 'frames': [], 'labels': [], 'colors': itertools.cycle(tagColors) }
fitdata = pd.DataFrame()
extradata = {}
extradata['Bconstants'] = []
for source, name, exclude, targetDM in zip(sources, names, exclusions, targetDMs):
fitframes, fitlabels = [], []
print('\n#', name + ':')
DMrangeLogger('', source)
if logging: print('> manually excluded:', exclude)
source = source.drop(exclude)
## Burst Exclusions
# exclude bursts that where a fit was not found
skip_exclusions = False
if type(exclude_set) == list:
skip_exclusions = (name in exclude_set)
elif type(exclude_set) == str:
skip_exclusions = (name == exclude_set)
if not skip_exclusions:
exclusionLogger('> exclusion rule: no fit found', source[~(source.amplitude > 0)])
source = source[source.amplitude > 0]
# exclude positive drifts, we assume they are non-physical and an artifact of over dedispersion
exclusionLogger('> exclusion rule: slope_abs < 0', source[~(source.slope_abs > 0)])
source = source[source.slope_abs > 0]
# exclude slopes with large relative errors
relerrthreshold = 0.4 # (40%)
exclusionLogger(f'> exclusion rule: rel slope error > {relerrthreshold}', source[~(abs(source['slope error (mhz/ms)']/source['slope (mhz/ms)']) < relerrthreshold)])
source = source[abs(source['slope error (mhz/ms)']/source['slope (mhz/ms)']) < relerrthreshold]
# exclude slopes with huge errors, they are vertical and poorly measured
errorthreshold = 1e8
exclusionLogger('> exclusion rule: slope error > {}'.format(errorthreshold), source[~(source['slope error (mhz/ms)'] < errorthreshold)])
source = source[source['slope error (mhz/ms)'] < errorthreshold]
# exclude slope ranges that flip signs over the dm range (this is analgous to the large error exclusion)
exclusionLogger('> exclusion rule: negative slope ranges', source[~(source['slope_over_nuobs'] > source['slope_over_nuobs_err'])])
source = source[source['slope_over_nuobs'] > source['slope_over_nuobs_err']]
else:
print(f'> Note: skipping exclusions for dataset {name}')
DMrangeLogger(name, source, burstwise=True) # log the dm range after we're done excluding
source = sloperanges(source) # compute drift ranges after burst exclusions
for dm, color in zip(source.DM.unique(), itertools.cycle(['r', 'y', 'b', 'k', 'g', 'c', 'm'])):
df = source[source.DM == dm]
df['color'] = color
fitframes.append(df)
fitlabels.append(dm)
# For Ref figure A, turn off otherwise
# if dm == 565:
# df['color'] = 'b'
# if dm == 348.82:
# df['color'] = 'r'
# Figure 5: compute drift/nu^2 vs nu range of fits
nus = np.linspace(0, 20000, num=2000)
popt, pcov = scipy.optimize.curve_fit(lambda x, c: c, nus, df['slope_abs_nuobssq'])
extradata['Bconstants'].append((popt[0], np.sqrt(pcov[0])))
markcolors = [] if len(fitframes) > 0 else ['r']
for f in fitframes:
markcolors.append(f['color'].iloc[0])
markcolors = itertools.cycle(markcolors)
# manylines = ['r--', 'y-', 'b-.', 'k--', 'g--', 'c-.', 'r-', 'b-', 'k-', 'g-', 'c-']
linestyles = ['--', '-', '-.', '--', '--', '-.', '-', '-', '-', '-', '-']
manylines = [next(markcolors)+lst for lst in linestyles]
labels = [round(lbl, 2) for lbl in fitlabels]
tempax, fits = plotSlopeVsDuration(fitframes, labels, annotatei=[], fitlines=manylines,
logscale=True, fiterrorfunc=log_error, dmtrace=True, hidefitlabel=True)
fitresults = []
for fit, dm in zip(fits, fitlabels):
fitresults.append({
'name': name.split(' DM')[0],
'DM': dm,
'param': fit[1],
'err': fit[2] ,
'red_chisq': fit[3],
'numbursts': fit[5]
})
fitdata = pd.concat([fitdata, pd.DataFrame(fitresults)], ignore_index=True)
fitdf = fitdata.loc[(fitdata.name == name)].set_index('DM')
tagged = False
if len(fitdf) != 0:
source = limitedDMsloperanges(fitdf, source)
for dm, color in zip(source.DM.unique(), itertools.cycle(['r', 'y', 'b', 'k', 'g', 'c', 'm'])):
# Figure 1
df = source[source.DM == dm]
if np.isclose(dm, targetDM):
print(f'>> num bursts remaining = {len(df.index.unique())}')
df['color'] = next(bakeddata['colors'])
bakeddata['frames'].append(df)
bakeddata['labels'].append(name)
tagged = True
elif len(fitdf) == 0:
print(f">> No measurements remaining for dataset {name}")
if not tagged:
print(">> No measurements at target DM")
if not showDMtraces: plt.close('all')
return bakeddata, fitdata, sources, extradata
def getOptimalDMs(fitdata, log=False):
"""Using the fitdata found in :py:meth:`bakeMeasurements`, identify which DM results in the lowest reduced chi-squared when fitting the sub-burst slope law while using all the bursts.
Thus this method hypothesizes that the sub-burst slope law must hold and uses that to define an "optimal" DM.
Because some measurements are excluded, some DMs (usually on the higher end of the range) may lead to entirely excluding a burst from analysis. Here we choose to interpret this as the DM being too high and unphysical.
That is, in addition to having the best fit to the sub-burst slope law, the "optimal" DM is also defined to be the DM where all bursts in our sample have physically valid (under our assumptions) measurements.
Args:
fitdata (pd.Dataframe): Dataframe output from :py:meth:`bakeMeasurements`
log (bool, optional): if True, ouptut tables of the fitdata with their reduced chi-squareds and number of remaining bursts by DM. Can be used to manually pick an "optimal" DM.
Returns:
list: list of optimal DMs by source. Use this as the input to py:meth:`bakeMeasurements` to produce publication figures of your measurements at a representative DM that is the optimal DM as defined here.
"""
optimalDMs = []
for name in fitdata.name.unique():
df = fitdata.loc[(fitdata.name == name)].set_index('DM')
limfitdf = df.loc[df.numbursts == df.numbursts.max()]
dm = limfitdf[limfitdf.red_chisq == limfitdf.red_chisq.min()].index[0]
optimalDMs.append(float(dm))
if log:
display(df)
print('minimal red_chisq:')
display(limfitdf[limfitdf.red_chisq == limfitdf.red_chisq.min()])
return optimalDMs
def plotSlopeVsDuration(frames=[], labels=[], title=None, logscale=True, annotatei=0,
markers=['o', '^', 'v', 'd', 'p'], hidefit=[], hidefitlabel=False,
fitlines=['r-', 'b--', 'g-.'], fitextents=None, figsize=(17,9),
errorfunc=modelerror, fiterrorfunc=rangelog_error, dmtrace=False, ax=None):
""" Plot the normalized sub-burst slope vs. sub-burst duration for a list of baked measurements.
Finds a fit of the form
.. math::
\\frac{1}{\\nu} \Big|\\frac{d\\nu}{dt}\Big| = \\frac{A}{t}
Bake your spectro-temporal measurements with :py:meth:`bakeMeasurements` first and use the outputs as the ``frames`` and ``labels`` parameters needed here.
Allows you to define how the uncertainties are calculated.
The following is an example of how to call this function using ``bakeddata``. In this example the uncertainties are estimated from the range of measurements obtained over the range of DMs that include all bursts after exclusions are performed.
.. code-block:: python
ax, _ = driftlaw.plotSlopeVsDuration(bakeddata['frames'], bakeddata['labels'], title="My Favorite Repeating FRB", logscale=True, errorfunc=driftlaw.limitedDMrangeerror, fiterrorfunc=driftlaw.log_error)
See `here <https://github.com/mef51/SurveyFRB20121102A/blob/master/code/PaperFigures.ipynb>`_ for a (nontrivial) usage example.
Args:
frames (list[pd.DataFrame]): list of dataframes of measurements. Produce this with :py:meth:`bakeMeasurements`
labels (list[str]): Labels to use on plot. One per source dataframe.
title (str, optional): title of plot
logscale (bool, optional): if True use a logscale
annotatei (int or list[int], optional): index or list of indices of ``frames``. Indices which frames' bursts you would like to see annotated. Useful for identifying outliers for further review.
markers (str or list[str], optional): matplotlib plot markers
hidefit (int or list[int], optional): index or indices of fits to hide. Starts from 0.
hidefitlabel (bool, optional): If True will not display a label in the legend of fits
fitlines (str or list[str], optional): matplotlib linestyles used for fits
fitextents (tuple, optional): (min duration, max duration) extents over which to display the fits
figsize (tuple, optional): matplotlib figure size (width, height)
errorfunc (function, optional): the function you want to evaluate your measurement uncertainties. Used as part of pd.scatter. If unsure, use :py:meth:`driftlaw.limitedDMrangeerror` or the default value.
fiterrorfunc (function, optional): function for evaluating fit uncertainties. If unsure use :py:meth:`driftlaw.log_error` or the default value.
dmtrace (bool, optional): if True create an additional plot of norm. slope vs. duration for each ``frame`` showing the trace of the point over the range of DMs used to measure.
ax (matplotlib.axes.Axes, optional): the axis to plot on.
Returns:
tuple: (ax, fits). ``ax`` is the figure axes and can be used to make additional modifications to the figure. ``fits`` is a list of [label, param, err, red_chisq, residuals, len(frame)].
"""
if len(frames) == 0:
return None, []
plt.rcParams["errorbar.capsize"] = 0
plt.rcParams["font.family"] = "serif"
markersize = 125#100
fontsize = 25 #18
annotsize = 14
filename = 'log_slope_over_nu_obsvsduration' if logscale else 'slope_over_nu_obsvsduration'
yaxis = 'slope_over_nuobs'
yaxis_lbl = 'Sub-burst Slope $\\,\\left|\\frac{d\\nu_\\mathrm{obs}}{dt_\\mathrm{D}}\\right|(1/\\nu_{\\mathrm{obs}})$ (ms$^{-1}$)'
# yaxis = 'recip_slope_over_nuobs'
# yaxis_lbl = 'nu_obs / slope'
if type(markers) == list:
markers = itertools.cycle(markers)
if type(fitlines) == list:
fitlines = itertools.cycle(fitlines)
edgecolor = 'k'
ax = frames[0].plot.scatter(ax=ax, x='tau_w_ms', y=yaxis,
xerr=errorfunc(frames[0])[0],
yerr=errorfunc(frames[0])[1],
figsize=figsize, s=markersize, c='color', colorbar=False, fontsize=fontsize,
logy=logscale, logx=logscale, marker=next(markers), edgecolors=edgecolor,
label=labels[0])
for frame, lbl in zip(frames[1:], labels[1:]):
frame.plot.scatter(ax=ax, x='tau_w_ms', y=yaxis,
xerr=errorfunc(frame)[0],
yerr=errorfunc(frame)[1],
figsize=figsize, s=markersize, c='color', colorbar=False, fontsize=fontsize,
logy=logscale, logx=logscale, marker=next(markers), edgecolors=edgecolor,
label=lbl)
if type(annotatei) == int:
annotatei =[annotatei]
for ai in annotatei:
if ai < len(frames):
for k, v in frames[ai].iterrows():
if v[yaxis] > 0 or not logscale:
text = k if len(k) < 8 else '...'+k[-8:]
ax.annotate(text, (v['tau_w_ms'], v[yaxis]), xytext=(-3,5),
textcoords='offset points', weight='bold', rotation='horizontal',
path_effects=[PathEffects.withStroke(linewidth=3, foreground='w')],
size=annotsize)
# move error bars to the back
for child in ax.get_children():
if child.zorder == 2:
child.set_zorder(-1)
alldata = pd.concat([f for f in frames])
if not fitextents:
fitextents = min(alldata['tau_w_ms'])*0.9, max(alldata['tau_w_ms'])*1.1
logfit = True
if type(hidefit) == int:
hidefit = [hidefit]
fits = []
for fi, (frame, label, line) in enumerate(zip(frames, labels, fitlines)):
x = np.linspace(fitextents[0], fitextents[1], num=1200)
if logfit:
fit = fitodr(frame, errorfunc=fiterrorfunc)
param, err = np.exp(fit.beta[0]), np.exp(fit.beta[0])*(np.exp(fit.sd_beta[0])-1)
else:
fit = fitodr(frame, log=logfit)
param, err = fit.beta[0], fit.sd_beta[0]
## compute reduced chisq
# parameter error
ex = frame['tau_w_error']*np.sqrt(frame['red_chisq'])
ey = frame['slope error (mhz/ms)']/frame['center_f']*np.sqrt(frame['red_chisq'])
# data_err = np.sqrt(ex**2 + ey**2)
# data_err = np.sqrt(ey**2 + (frame['slope_over_nuobs']*ex/frame['tau_w_ms'])**2)
data_err = np.sqrt(ey**2 + ((param/frame['tau_w_ms'])*ex/frame['tau_w_ms'])**2)
residuals = frame['slope_over_nuobs'] - param/frame['tau_w_ms']
chisq = np.sum((residuals / data_err) ** 2)
red_chisq = chisq / (len(frame) - 1)
# print(residuals)
fits.append([label, param, err, red_chisq, residuals, len(frame)])
lstr = ''
if not hidefitlabel:
lstr = '{} fit ({:.3f} $\\pm$ {:.3f}) $t_w^{{-1}}$'.format(label, param, err)
if fi not in hidefit:
color = re.match(r"\w+", line)[0]
lstyle = line.split(color)[-1]
plt.plot(x, param/x, color=color, ls=lstyle, label=lstr, zorder=-2)
if title:
ax.set_title(title, size=fontsize)
if dmtrace:
sorteddata = pd.concat([frames[dmi] for dmi in np.argsort(labels)])
for bid in sorteddata.index.unique():
plt.plot(sorteddata.loc[bid]['tau_w_ms'], sorteddata.loc[bid]['slope_over_nuobs'])
ax.set_xlabel('Sub-burst Duration $t_\\mathrm{w}$ (ms)', size=fontsize)
ax.set_ylabel(yaxis_lbl, size=fontsize)
plt.legend(fontsize='xx-large')
# plt.legend()
plt.tight_layout()
return ax, fits
def _plotAnglevsDM(frames, annotate=False, save=False, drops=[]):
thetamodel = scipy.odr.Model(atanmodel)
offsetmodel = scipy.odr.Model(offset_atanmodel)
for frame in frames:
frame = computeModelDetails(frame)
frame['angle_clean'] = frame[['angle']].apply(cleanAngle, axis=1) - (np.pi/2)
def errorexpr(frame):
ex = frame['tau_w_error']
ey = frame['angle_error']
return ex, ey
markersize = 125 #100
fontsize = 25 #18
annotsize = 14
logscale = False
figsize = (15, 8)
ax = frames[0].drop(drops).plot.scatter(x='tau_w_ms', y='angle_clean',
xerr=errorexpr(frame[0])[0],
yerr=errorexpr(frame[0])[0],
figsize=figsize, s=markersize, c='b', colorbar=False, fontsize=fontsize, logy=logscale, logx=logscale, marker='X', edgecolors='k',
label='$\\Delta$DM = 1/2 pc/cm$^3$')
markers = ['o', 'p', 's']
for frame, c, label, mark in zip(frames[:3], ['r', 'c', 'g'], ['$\\Delta$DM = 0 pc/cm$^3$', '$\\Delta$DM = -1 pc/cm$^3$', '$\\Delta$DM = -2 pc/cm$^3$'], markers):
frame.drop(drops).plot.scatter(ax=ax, x='tau_w_ms', y='angle_clean',
xerr=errorexpr(frame)[0],
yerr=errorexpr(frame)[1],
figsize=figsize, s=markersize, c=c, colorbar=False, fontsize=fontsize, logy=logscale, logx=logscale, marker=mark, edgecolors='k',
label=label)
ax.set_xlabel('Sub-burst Duration $t_\\mathrm{w}$ (ms)', size=fontsize)
#ax.set_ylabel('-$\pi/2 + $ Gaussian2d angle (rad)', size=fontsize)
ax.set_ylabel('Sub-burst slope Angle $\\theta$ (rad)', size=fontsize)
## Find Fits
lstyles = ['-', '--', '-.', ':']
for frame, drops, pcol, beta, lstyle in zip(frames, [[15], [15], [15], [15]], ['r', 'c', 'g', 'b'], [-6, -4, -3, -9], lstyles):
if frame.equals(frames[0]):
model = thetamodel
else:
model = offsetmodel
#model = thetamodel
datafitter = scipy.odr.RealData(frame.drop(drop)['tau_w_ms'],
frame.drop(drop)['angle_clean'],
sx=errorexpr(frame)[0],
sy=errorexpr(frame)[1])
anglefitter = scipy.odr.ODR(datafitter, model, beta0=[1])
anglefitter.set_job(fit_type=0)
anglefit = anglefitter.run()
tws = np.linspace(0, 8.5, num=80)
print(anglefit.beta)
#print(anglefit.beta[0])
if model == thetamodel:
plt.plot(tws, np.arctan(tws/anglefit.beta[0]), c=pcol, label="$\\tan^{{-1}}(t_\\mathrm{{w}}/{:.2f})$".format(anglefit.beta[0]), linestyle=lstyle)
elif model == offsetmodel:
plt.plot(tws, np.arctan(tws/zero_ddm_fit) + anglefit.beta[0], c=pcol, label="$\\tan^{{-1}}(t_\\mathrm{{w}}/{:.2f}) {:+.2f}$ rad".format(zero_ddm_fit, anglefit.beta[0]), linestyle=lstyle)
## Point Annotations
if annotate:
for k, v in frames[0].iterrows():
ax.annotate(int(k) if k != 15.5 else k, (v['tau_w_ms'], v['angle_clean']), xytext=(-3,5), textcoords='offset points', weight='bold', size=annotsize)
ax.set_xlim(0, 8.5)
plt.title("Fit Angles for FRB180916 at different DMs", size=25)
plt.legend(fontsize='xx-large')
if save:
for fformat in ['png', 'pdf', 'eps']: plt.savefig('angleatdifferentDMs.{}'.format(fformat))