forked from kubernetes/kubernetes
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
math.go
327 lines (301 loc) · 7.66 KB
/
math.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"math/big"
inf "gopkg.in/inf.v0"
)
const (
// maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64.
// It is also the maximum decimal digits that can be represented with an int64.
maxInt64Factors = 18
)
var (
// Commonly needed big.Int values-- treat as read only!
bigTen = big.NewInt(10)
bigZero = big.NewInt(0)
bigOne = big.NewInt(1)
bigThousand = big.NewInt(1000)
big1024 = big.NewInt(1024)
// Commonly needed inf.Dec values-- treat as read only!
decZero = inf.NewDec(0, 0)
decOne = inf.NewDec(1, 0)
decMinusOne = inf.NewDec(-1, 0)
decThousand = inf.NewDec(1000, 0)
dec1024 = inf.NewDec(1024, 0)
decMinus1024 = inf.NewDec(-1024, 0)
// Largest (in magnitude) number allowed.
maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64
// The maximum value we can represent milli-units for.
// Compare with the return value of Quantity.Value() to
// see if it's safe to use Quantity.MilliValue().
MaxMilliValue = int64(((1 << 63) - 1) / 1000)
)
const mostNegative = -(mostPositive + 1)
const mostPositive = 1<<63 - 1
// int64Add returns a+b, or false if that would overflow int64.
func int64Add(a, b int64) (int64, bool) {
c := a + b
switch {
case a > 0 && b > 0:
if c < 0 {
return 0, false
}
case a < 0 && b < 0:
if c > 0 {
return 0, false
}
if a == mostNegative && b == mostNegative {
return 0, false
}
}
return c, true
}
// int64Multiply returns a*b, or false if that would overflow or underflow int64.
func int64Multiply(a, b int64) (int64, bool) {
if a == 0 || b == 0 || a == 1 || b == 1 {
return a * b, true
}
if a == mostNegative || b == mostNegative {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64.
// Use when b is known to be greater than one.
func int64MultiplyScale(a int64, b int64) (int64, bool) {
if a == 0 || a == 1 {
return a * b, true
}
if a == mostNegative && b != 1 {
return 0, false
}
c := a * b
return c, c/b == a
}
// int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 10) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale10(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 10, true
}
if a == mostNegative {
return 0, false
}
c := a * 10
return c, c/10 == a
}
// int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 100) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale100(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 100, true
}
if a == mostNegative {
return 0, false
}
c := a * 100
return c, c/100 == a
}
// int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than
// int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication.
func int64MultiplyScale1000(a int64) (int64, bool) {
if a == 0 || a == 1 {
return a * 1000, true
}
if a == mostNegative {
return 0, false
}
c := a * 1000
return c, c/1000 == a
}
// positiveScaleInt64 multiplies base by 10^scale, returning false if the
// value overflows. Passing a negative scale is undefined.
func positiveScaleInt64(base int64, scale Scale) (int64, bool) {
switch scale {
case 0:
return base, true
case 1:
return int64MultiplyScale10(base)
case 2:
return int64MultiplyScale100(base)
case 3:
return int64MultiplyScale1000(base)
case 6:
return int64MultiplyScale(base, 1000000)
case 9:
return int64MultiplyScale(base, 1000000000)
default:
value := base
var ok bool
for i := Scale(0); i < scale; i++ {
if value, ok = int64MultiplyScale(value, 10); !ok {
return 0, false
}
}
return value, true
}
}
// negativeScaleInt64 reduces base by the provided scale, rounding up, until the
// value is zero or the scale is reached. Passing a negative scale is undefined.
// The value returned, if not exact, is rounded away from zero.
func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) {
if scale == 0 {
return base, true
}
value := base
var fraction bool
for i := Scale(0); i < scale; i++ {
if !fraction && value%10 != 0 {
fraction = true
}
value = value / 10
if value == 0 {
if fraction {
if base > 0 {
return 1, false
}
return -1, false
}
return 0, true
}
}
if fraction {
if base > 0 {
value += 1
} else {
value += -1
}
}
return value, !fraction
}
func pow10Int64(b int64) int64 {
switch b {
case 0:
return 1
case 1:
return 10
case 2:
return 100
case 3:
return 1000
case 4:
return 10000
case 5:
return 100000
case 6:
return 1000000
case 7:
return 10000000
case 8:
return 100000000
case 9:
return 1000000000
case 10:
return 10000000000
case 11:
return 100000000000
case 12:
return 1000000000000
case 13:
return 10000000000000
case 14:
return 100000000000000
case 15:
return 1000000000000000
case 16:
return 10000000000000000
case 17:
return 100000000000000000
case 18:
return 1000000000000000000
default:
return 0
}
}
// powInt64 raises a to the bth power. Is not overflow aware.
func powInt64(a, b int64) int64 {
p := int64(1)
for b > 0 {
if b&1 != 0 {
p *= a
}
b >>= 1
a *= a
}
return p
}
// negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or
// false if no such division is possible. Dividing by negative scales is undefined.
func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) {
if scale == 0 {
return base, 0, true
}
// the max scale representable in base 10 in an int64 is 18 decimal places
if scale >= 18 {
return 0, base, false
}
divisor := pow10Int64(int64(scale))
return base / divisor, base % divisor, true
}
// removeInt64Factors divides in a loop; the return values have the property that
// value == result * base ^ scale
func removeInt64Factors(value int64, base int64) (result int64, times int32) {
times = 0
result = value
negative := result < 0
if negative {
result = -result
}
switch base {
// allow the compiler to optimize the common cases
case 10:
for result >= 10 && result%10 == 0 {
times++
result = result / 10
}
// allow the compiler to optimize the common cases
case 1024:
for result >= 1024 && result%1024 == 0 {
times++
result = result / 1024
}
default:
for result >= base && result%base == 0 {
times++
result = result / base
}
}
if negative {
result = -result
}
return result, times
}
// removeBigIntFactors divides in a loop; the return values have the property that
// d == result * factor ^ times
// d may be modified in place.
// If d == 0, then the return values will be (0, 0)
func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) {
q := big.NewInt(0)
m := big.NewInt(0)
for d.Cmp(bigZero) != 0 {
q.DivMod(d, factor, m)
if m.Cmp(bigZero) != 0 {
break
}
times++
d, q = q, d
}
return d, times
}