You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello. I am willing to try running the agentchat_auto_feedback_from_code_execution.ipynb . I have a gpt-4 model with a custom name deployed on Azure. Locally, I have created OAI_CONFIG_LIST file, where I specify the key, the model name, and an API base.
The file seems to be read properly. I have also adjusted the filter_dict accordingly. However, when I try running the first cell in example task from the notebook i get InvalidRequestError: Resource not found.
I can also confirm that the same model with the same key i perfectly responsive through regular openai python library
Here is the full error stack trace:
{
"name": "InvalidRequestError",
"message": "Resource not found",
"stack": "---------------------------------------------------------------------------
InvalidRequestError Traceback (most recent call last)
\\AutoGen\\autogen-main\
otebook\\agentchat_auto_feedback_from_code_execution.ipynb Cell 11 line 2
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=10'>11</a> user_proxy = autogen.UserProxyAgent(
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=11'>12</a> name=\"user_proxy\",
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=12'>13</a> human_input_mode=\"NEVER\",
(...)
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=18'>19</a> },
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=19'>20</a> )
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=20'>21</a> # the assistant receives a message from the user_proxy, which contains the task description
---> <a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=21'>22</a> user_proxy.initiate_chat(
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=22'>23</a> assistant,
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=23'>24</a> message=\"\"\"What date is today? Compare the year-to-date gain for META and TESLA.\"\"\",
<a href='vscode-notebook-cell:/AutoGen/autogen-main/notebook/agentchat_auto_feedback_from_code_execution.ipynb#X13sZmlsZQ%3D%3D?line=24'>25</a> )
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\agentchat\\conversable_agent.py:531, in ConversableAgent.initiate_chat(self, recipient, clear_history, silent, **context)
517 \"\"\"Initiate a chat with the recipient agent.
518
519 Reset the consecutive auto reply counter.
(...)
528 \"message\" needs to be provided if the `generate_init_message` method is not overridden.
529 \"\"\"
530 self._prepare_chat(recipient, clear_history)
--> 531 self.send(self.generate_init_message(**context), recipient, silent=silent)
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\agentchat\\conversable_agent.py:334, in ConversableAgent.send(self, message, recipient, request_reply, silent)
332 valid = self._append_oai_message(message, \"assistant\", recipient)
333 if valid:
--> 334 recipient.receive(message, self, request_reply, silent)
335 else:
336 raise ValueError(
337 \"Message can't be converted into a valid ChatCompletion message. Either content or function_call must be provided.\"
338 )
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\agentchat\\conversable_agent.py:462, in ConversableAgent.receive(self, message, sender, request_reply, silent)
460 if request_reply is False or request_reply is None and self.reply_at_receive[sender] is False:
461 return
--> 462 reply = self.generate_reply(messages=self.chat_messages[sender], sender=sender)
463 if reply is not None:
464 self.send(reply, sender, silent=silent)
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\agentchat\\conversable_agent.py:779, in ConversableAgent.generate_reply(self, messages, sender, exclude)
777 continue
778 if self._match_trigger(reply_func_tuple[\"trigger\"], sender):
--> 779 final, reply = reply_func(self, messages=messages, sender=sender, config=reply_func_tuple[\"config\"])
780 if final:
781 return reply
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\agentchat\\conversable_agent.py:606, in ConversableAgent.generate_oai_reply(self, messages, sender, config)
603 messages = self._oai_messages[sender]
605 # TODO: #1143 handle token limit exceeded error
--> 606 response = oai.ChatCompletion.create(
607 context=messages[-1].pop(\"context\", None), messages=self._oai_system_message + messages, **llm_config
608 )
609 return True, oai.ChatCompletion.extract_text_or_function_call(response)[0]
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\oai\\completion.py:789, in Completion.create(cls, context, use_cache, config_list, filter_func, raise_on_ratelimit_or_timeout, allow_format_str_template, **config)
787 base_config[\"max_retry_period\"] = 0
788 try:
--> 789 response = cls.create(
790 context,
791 use_cache,
792 raise_on_ratelimit_or_timeout=i < last or raise_on_ratelimit_or_timeout,
793 **base_config,
794 )
795 if response == -1:
796 return response
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\oai\\completion.py:820, in Completion.create(cls, context, use_cache, config_list, filter_func, raise_on_ratelimit_or_timeout, allow_format_str_template, **config)
818 with diskcache.Cache(cls.cache_path) as cls._cache:
819 cls.set_cache(seed)
--> 820 return cls._get_response(params, raise_on_ratelimit_or_timeout=raise_on_ratelimit_or_timeout)
File \\AutoGen\\.venv\\Lib\\site-packages\\autogen\\oai\\completion.py:210, in Completion._get_response(cls, config, raise_on_ratelimit_or_timeout, use_cache)
208 response = openai_completion.create(**config)
209 else:
--> 210 response = openai_completion.create(request_timeout=request_timeout, **config)
211 except (
212 ServiceUnavailableError,
213 APIConnectionError,
214 ):
215 # transient error
216 logger.info(f\"retrying in {retry_wait_time} seconds...\", exc_info=1)
File \\AutoGen\\.venv\\Lib\\site-packages\\openai\\api_resources\\chat_completion.py:25, in ChatCompletion.create(cls, *args, **kwargs)
23 while True:
24 try:
---> 25 return super().create(*args, **kwargs)
26 except TryAgain as e:
27 if timeout is not None and time.time() > start + timeout:
File \\AutoGen\\.venv\\Lib\\site-packages\\openai\\api_resources\\abstract\\engine_api_resource.py:155, in EngineAPIResource.create(cls, api_key, api_base, api_type, request_id, api_version, organization, **params)
129 @classmethod
130 def create(
131 cls,
(...)
138 **params,
139 ):
140 (
141 deployment_id,
142 engine,
(...)
152 api_key, api_base, api_type, api_version, organization, **params
153 )
--> 155 response, _, api_key = requestor.request(
156 \"post\",
157 url,
158 params=params,
159 headers=headers,
160 stream=stream,
161 request_id=request_id,
162 request_timeout=request_timeout,
163 )
165 if stream:
166 # must be an iterator
167 assert not isinstance(response, OpenAIResponse)
File \\AutoGen\\.venv\\Lib\\site-packages\\openai\\api_requestor.py:299, in APIRequestor.request(self, method, url, params, headers, files, stream, request_id, request_timeout)
278 def request(
279 self,
280 method,
(...)
287 request_timeout: Optional[Union[float, Tuple[float, float]]] = None,
288 ) -> Tuple[Union[OpenAIResponse, Iterator[OpenAIResponse]], bool, str]:
289 result = self.request_raw(
290 method.lower(),
291 url,
(...)
297 request_timeout=request_timeout,
298 )
--> 299 resp, got_stream = self._interpret_response(result, stream)
300 return resp, got_stream, self.api_key
File \\AutoGen\\.venv\\Lib\\site-packages\\openai\\api_requestor.py:710, in APIRequestor._interpret_response(self, result, stream)
702 return (
703 self._interpret_response_line(
704 line, result.status_code, result.headers, stream=True
705 )
706 for line in parse_stream(result.iter_lines())
707 ), True
708 else:
709 return (
--> 710 self._interpret_response_line(
711 result.content.decode(\"utf-8\"),
712 result.status_code,
713 result.headers,
714 stream=False,
715 ),
716 False,
717 )
File \\AutoGen\\.venv\\Lib\\site-packages\\openai\\api_requestor.py:775, in APIRequestor._interpret_response_line(self, rbody, rcode, rheaders, stream)
773 stream_error = stream and \"error\" in resp.data
774 if stream_error or not 200 <= rcode < 300:
--> 775 raise self.handle_error_response(
776 rbody, rcode, resp.data, rheaders, stream_error=stream_error
777 )
778 return resp
InvalidRequestError: Resource not found"
}
The text was updated successfully, but these errors were encountered:
Hello. I am willing to try running the
agentchat_auto_feedback_from_code_execution.ipynb
. I have a gpt-4 model with a custom name deployed on Azure. Locally, I have createdOAI_CONFIG_LIST
file, where I specify the key, the model name, and an API base.The file seems to be read properly. I have also adjusted the
filter_dict
accordingly. However, when I try running the first cell in example task from the notebook i getInvalidRequestError: Resource not found
.I can also confirm that the same model with the same key i perfectly responsive through regular
openai
python libraryHere is the full error stack trace:
The text was updated successfully, but these errors were encountered: