-
Notifications
You must be signed in to change notification settings - Fork 1
/
crat_all_images.py
332 lines (324 loc) · 11.8 KB
/
crat_all_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import os,sys,os.path,numpy as np,copy
import contratio as crat
import astropy.io.fits as pyfits
import scipy.ndimage as nd,matplotlib.pyplot as plt
sys.path.append('/Users/awallace/Documents/pynrm/')
import stats
nameList = sys.argv[4:len(sys.argv)]
if len(sys.argv)<4:
print('Useage: crat_all_images.py data_directory_location plot_directory num_cals_per_target object_name (with spaces)')
sys.exit()
#Combine name into single string
name = ''
if len(nameList)>1:
for ii in range(0,len(nameList)):
name+=nameList[ii]
if ii<len(nameList)-1:
name+=' '
else:
name = nameList[0]
#Remove Spaces From Object Name
objNoSpaces = name.split(' ')
objName = ''.join(objNoSpaces)
if sys.argv[1][0]=='/':
dataDir = sys.argv[1]
else:
dataDir = os.getcwd()+'/'+sys.argv[1]
if sys.argv[2][0]=='/':
plotDir = sys.argv[2]
else:
plotDir = os.getcwd()+'/'+sys.argv[2]
objDir = plotDir+'/'+objName
if not os.path.isdir(objDir):
os.makedirs(objDir)
outfiles = []
#cycle through all existing data files
for year in range(11,20):
for month in range(1,13):
for day in range(1,32):
directory = '%02d'%(year,)+'%02d'%(month,)+'%02d'%(day,)
rawDir = dataDir+'/'+directory
cubeDir = rawDir+'_cubes'
if not os.path.isfile(rawDir+'/blockinfo.txt'):
continue
if not os.path.isdir(cubeDir):
continue
lineNums = []
all_elements = []
elements = []
cal_els = []
tgt_cubes = []
cal_cubes = []
total = -1
allDirs = []
infoFile = open(rawDir+'/blockinfo.txt','r')
mm = 0
count = 0
#Only proceed if the given object was observed on this particular night
for line1 in infoFile:
if name in line1:
count+=1
if count<1:
continue
allDirs.append(rawDir)
infoFile = open(rawDir+'/blockinfo.txt','r')
#Find line and frame numbers where the name appears
for line in infoFile:
mm+=1
if mm==1:
continue
total+=1
entry = line.split(' ')
newEntry = []
for nn in range(0,len(entry)):
if not entry[nn]=='':
newEntry.append(entry[nn])
#Find object name
cubeFile = cubeDir+'/cube'+str(int(entry[0]))+'.fits'
if os.path.isfile(cubeFile) and pyfits.getheader(cubeFile)['OBJECT']==name:
elements.append([int(entry[0]),rawDir])
lineNums.append([total,rawDir])
all_elements.append([int(entry[0]),rawDir])
#Create target cube list
for ii in range(0,len(elements)):
cubeDir = elements[ii][1]+'_cubes'
tgt_cubes.append(cubeDir+'/cube'+str(elements[ii][0])+'.fits')
#Find calibrators from objects nearby in the list. Go one step in both directions and add frame to
#list of calibrators.
els = [ii for ii,jj in enumerate(tgt_cubes) if cubeDir in jj]
#print(lineNums)
numCals = int(sys.argv[3])*len(els)
for kk in els:
ii = lineNums[kk][0]
jj = lineNums[kk][0]
cubeDir = elements[kk][1]+'_cubes'
while ii>=0 or jj<len(all_elements):
if ii>=0 and os.path.isfile(cubeDir+'/cube'+str(all_elements[ii][0])+'.fits'):
header = pyfits.getheader(cubeDir+'/cube'+str(all_elements[ii][0])+'.fits')
if not all_elements[ii][1]==rawDir:
break
if not header['OBJECT']==name:
cal_els.append(all_elements[ii])
ii-=1
elif not os.path.isfile(cubeDir+'/cube'+str(all_elements[ii][0])+'.fits'):
ii-=1
if len(cal_els)>=int(sys.argv[3])*(kk+1):
break
if jj<len(all_elements) and os.path.isfile(cubeDir+'/cube'+str(all_elements[jj][0])+'.fits'):
header = pyfits.getheader(cubeDir+'/cube'+str(all_elements[jj][0])+'.fits')
if not all_elements[jj][1]==rawDir:
continue
if not header['OBJECT']==name:
cal_els.append(all_elements[jj])
jj+=1
elif jj>=len(all_elements) or not os.path.isfile(cubeDir+'/cube'+str(all_elements[jj][0])+'.fits'):
jj+=1
if len(cal_els)>=int(sys.argv[3])*(kk+1):
break
tgt_ims = []
cal_ims = []
pas = []
#Make sure there are no duplicates
cal_els.sort()
new_els = []
for ii in range(0,len(cal_els)):
if ii==0:
new_els.append(cal_els[ii])
elif not cal_els[ii]==cal_els[ii-1]:
new_els.append(cal_els[ii])
cal_els = new_els
#Create target cube list
new_cubes = []
tgt_els = []
for ii in range(0,len(tgt_cubes)):
cube = pyfits.getdata(tgt_cubes[ii])
pa = pyfits.getdata(tgt_cubes[ii],1)['pa']
for jj in range(0,len(cube)):
image = cube[jj]
if (np.max(image)-np.mean(image))/np.std(image)>19:
tgt_ims.append(image)
pas.append(pa[jj])
new_cubes.append(tgt_cubes[ii])
tgt_els.append(jj)
#Create calibrator list
cal_objects = []
for ii in range(0,len(cal_els)):
cubeDir = cal_els[ii][1]+'_cubes'
cal_cubes.append(cubeDir+'/cube'+str(cal_els[ii][0])+'.fits')
cube = pyfits.getdata(cal_cubes[ii])
num = 0
for jj in range(0,len(cube)):
image = cube[jj]
if (np.max(image)-np.mean(image))/np.std(image)>19:
num+=1
for jj in range(0,len(cube)):
image = cube[jj]
cal = [pyfits.getheader(cal_cubes[ii])['OBJECT'],cubeDir+'/cube'+str(cal_els[ii][0])+'.fits',str(num),str(jj)]
if (np.max(image)-np.mean(image))/np.std(image)>19:
cal_ims.append(image)
cal_objects.append(cal)
tgt_ims = np.array(tgt_ims)
cal_ims = np.array(cal_ims)
all_ims = []
#Restructure tgt_cubes vector so there is an entry for each image
#When this is stored in the FITS file, it shows where each image came from
tgt_cubes = new_cubes
#Store target and calibration images in one file
tempFile = plotDir+'/temp.fits'
header = pyfits.getheader(tgt_cubes[0])
radec = [header['RA'],header['DEC']]
hdu1 = pyfits.PrimaryHDU(tgt_ims, header)
hdu2 = pyfits.ImageHDU(cal_ims)
col1 = pyfits.Column(name='pa', format='E', array=pas)
col2 = pyfits.Column(name='cal_objects', format='A40', array=[row[0] for row in cal_objects])
col3 = pyfits.Column(name='cal_cubes', format='A200', array=[row[1] for row in cal_objects])
col4 = pyfits.Column(name='cal_lengths', format='A40', array=[row[2] for row in cal_objects])
col5 = pyfits.Column(name='cal_els', format='A40', array=[row[3] for row in cal_objects])
col6 = pyfits.Column(name='tgt_cubes', format='A200', array=tgt_cubes)
col7 = pyfits.Column(name='tgt_els', format='E', array=tgt_els)
hdu3 = pyfits.BinTableHDU.from_columns(pyfits.ColDefs([col1,col2,col3,col4,col5,col6,col7]))
hdulist = pyfits.HDUList([hdu1,hdu2,hdu3])
hdulist.writeto(tempFile, clobber=True)
#Create contrast ratio plots (one crat file for each night this object was observed)
crat_file = crat.best_psf_subtract(tempFile,plotDir)
#Clean up and rename crat file to something unique
os.system('rm -rf '+tempFile)
os.system('mv '+crat_file+' crat'+str(year)+str(month)+str(day)+'.fits')
outfiles.append('crat'+str(year)+str(month)+str(day)+'.fits')
crat_ims = []
pas = []
cal_objects = []
cal_cubes = []
cal_lengths = []
cal_elements = []
tgt_cubes = []
oldHeader = pyfits.getheader(outfiles[0])
sizes = []
tgt_elements = []
#Extract information from crat files creating image array
for ii in range(0,len(outfiles)):
infile = outfiles[ii]
ims = pyfits.getdata(infile)
extra = pyfits.getdata(infile,1)
for jj in range(0,len(ims)):
crat_ims.append(ims[jj])
sizes.append(ims[jj].shape[0])
pas.append(extra['pa'][jj])
cal_objects.append(extra['cal_objects'][jj])
cal_cubes.append(extra['cal_cubes'][jj])
cal_elements.append(extra['cal_elements'][jj])
tgt_cubes.append(extra['tgt_cubes'][jj])
tgt_elements.append(extra['tgt_elements'][jj])
os.system('rm -rf '+infile)
bigSize = max(sizes)
#Make all crat images same size by zooming out if necessary
for ii in range(0,len(crat_ims)):
if crat_ims[ii].shape[0]==bigSize:
continue
smallSize = crat_ims[ii].shape[0]
newArray = np.zeros((bigSize,bigSize))
newArray[bigSize//2-smallSize//2:bigSize//2+smallSize//2,bigSize//2-smallSize//2:bigSize//2+smallSize//2] = crat_ims[ii]
crat_ims[ii] = newArray
dates = []
#Create array showing the date each image was taken
for ii in range(0,len(tgt_cubes)):
for jj in range(0,len(tgt_cubes[ii])-11):
if tgt_cubes[ii][jj:jj+11]=='_cubes/cube':
break
dateString = tgt_cubes[ii][jj-6:jj]
months = 'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'
date = str(int(dateString[4:6])) + '-' + months[3*(int(dateString[2:4])-1):3*int(dateString[2:4])] + '-20' + dateString[0:2]
dates.append(date)
#Store all crat information in one file
sz = crat_ims[0].shape[0]
header = pyfits.Header(oldHeader)
header['CRVAL1']=header['RA']
header['CRVAL2']=header['DEC']
header['CRPIX1']=sz//2
header['CRPIX2']=sz//2
header['CDELT1']=-1./(3600*1024)
header['CDELT2']=1./(3600*1024)
header['CTYPE1']='RA---TAN'
header['CTYPE2']='DEC--TAN'
header['CD1_1']=-0.01/3600.
header['CD2_2']=0.01/3600.
header['CD1_2']=0
header['CD2_1']=0
header['OBJECT']=oldHeader['OBJECT']
hdu = pyfits.PrimaryHDU(crat_ims,header)
col1 = pyfits.Column(name='pa', format='E', array=pas)
col2 = pyfits.Column(name='cal_objects', format='A40', array=cal_objects)
col3 = pyfits.Column(name='cal_cubes', format='A200', array=cal_cubes)
col4 = pyfits.Column(name='cal_elements', format='E', array=cal_elements)
col5 = pyfits.Column(name='tgt_cubes', format='A200', array=tgt_cubes)
col6 = pyfits.Column(name='tgt_indices', format='E', array=tgt_elements)
col7 = pyfits.Column(name='observation_dates', format='A40', array=dates)
hdu2 = pyfits.BinTableHDU.from_columns(pyfits.ColDefs([col1,col2,col3,col4,col5,col6,col7]))
hdulist = pyfits.HDUList([hdu,hdu2])
hdulist.writeto(crat_file,clobber=True)
crat_im = pyfits.getdata(crat_file)
pas = pyfits.getdata(crat_file,1)['pa']
#Take average over frames
result = np.mean(crat_im,axis=0)
oldSize = pyfits.getdata(tgt_cubes[0]).shape[1]
"""newPA = np.mean(pas)
#Set up rotation angle so image is approximately aligned
#Make sure north is never more than 45 degrees from vertical
newRot = newPA
while newRot>180:
newRot-=360
while newRot<-180:
newRot+=360
newRot = 90-newRot
while newRot>45 or newRot<-45:
if newRot<0:
newRot+=90
elif newRot>0:
newRot-=90
result = nd.rotate(result,newRot,reshape=True)
size = result.shape[0]
sz = pyfits.getdata(tgt_cubes[0]).shape[1]
#Resize the result so it is the same size as original image
result = result[size//2-sz//2:size//2+sz//2,size//2-sz//2:size//2+sz//2]"""
#Store average plot in FITS file
hdu = pyfits.PrimaryHDU(result)
#costerm = np.cos(np.radians(newRot))*0.01/3600.
#sinterm = np.sin(np.radians(newRot))*0.01/3600.
header = pyfits.getheader(tgt_cubes[0])
hdu.header = header
hdu.header['CRVAL1']=radec[0]
hdu.header['CRVAL2']=radec[1]
hdu.header['CTYPE1']='RA---TAN'
hdu.header['CTYPE2']='DEC--TAN'
hdu.header['CRPIX1']=sz//2
hdu.header['CRPIX2']=sz//2
hdu.header['CD1_1']=-0.01/3600.
hdu.header['CD2_2']=0.01/3600.
hdu.header['CD1_2']=0
hdu.header['CD2_1']=0
hdu.header['OBJECT']=name
#hdu.header['RADECSYS']='FK5'
hdulist = pyfits.HDUList([hdu])
hdulist.writeto(objDir+'/ave_crat_'+objName+'_'+str(oldSize)+'.fits', clobber=True)
#Find weighted mean
mean_im = stats.weighted_mean(crat_im)
std_im = stats.bootstrap(crat_im,100)
std_im[np.where(std_im==0)] = 1e9
significance = mean_im/std_im
"""mean_im = nd.rotate(mean_im,newRot,reshape=True)
size = mean_im.shape[0]
mean_im = mean_im[size//2-sz//2:size//2+sz//2,size//2-sz//2:size//2+sz//2]
"""
hdu2 = pyfits.PrimaryHDU(mean_im)
hdu2.header = hdu.header
hdulist = pyfits.HDUList([hdu2])
hdulist.writeto(objDir+'/weighted_mean_'+objName+'_'+str(oldSize)+'.fits', clobber=True)
"""significance = nd.rotate(significance,newRot,reshape=True)
size = significance.shape[0]
significance = significance[size//2-sz//2:size//2+sz//2,size//2-sz//2:size//2+sz//2]"""
#significance[np.where(significance>100*np.median(significance))] = 0
#significance[np.where(np.isnan(significance))] = 0
hdu3 = pyfits.PrimaryHDU(significance)
hdu3.header = hdu.header
hdulist = pyfits.HDUList([hdu3])
hdulist.writeto(objDir+'/significance_'+objName+'_'+str(oldSize)+'.fits', clobber=True)