You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Describe the bug/ 问题描述 (Mandatory / 必填)
squeezenet_1_0& squeezenet_1_1边训边推过程中精度异常
Hardware Environment(Ascend/GPU/CPU) / 硬件环境:
Please delete the backend not involved / 请删除不涉及的后端:
/device ascend
Software Environment / 软件环境 (Mandatory / 必填):
-- MindSpore version (e.g., 1.7.0.Bxxx) :mindspore_v2.0.0 mindcv_0.2.2
-- Python version (e.g., Python 3.7.5) :3.7.5
-- OS platform and distribution (e.g., Linux Ubuntu 16.04):EulerOS2.8
-- GCC/Compiler version (if compiled from source):7.3.0
If this is your first time, please read our contributor guidelines:
https://github.com/mindspore-lab/mindcv/blob/main/CONTRIBUTING.md
Describe the bug/ 问题描述 (Mandatory / 必填)
squeezenet_1_0& squeezenet_1_1边训边推过程中精度异常
Ascend
/GPU
/CPU
) / 硬件环境:Software Environment / 软件环境 (Mandatory / 必填):
-- MindSpore version (e.g., 1.7.0.Bxxx) :mindspore_v2.0.0 mindcv_0.2.2
-- Python version (e.g., Python 3.7.5) :3.7.5
-- OS platform and distribution (e.g., Linux Ubuntu 16.04):EulerOS2.8
-- GCC/Compiler version (if compiled from source):7.3.0
Excute Mode / 执行模式 (Mandatory / 必填)(
PyNative
/Graph
):To Reproduce / 重现步骤 (Mandatory / 必填)
Steps to reproduce the behavior:
Expected behavior / 预期结果 (Mandatory / 必填)
可复现达标精度
Screenshots/ 日志 / 截图 (Mandatory / 必填)
[2023-07-11 13:53:06] mindcv.utils.callbacks INFO - Epoch: [195/200], batch: [5004/5004], loss: 6.907755, lr: 0.000154, time: 97.860354s
[2023-07-11 13:53:11] mindcv.utils.callbacks INFO - Validation Top_1_Accuracy: 0.1000%, Top_5_Accuracy: 0.5000%, time: 4.961876s
[2023-07-11 13:53:11] mindcv.utils.callbacks INFO - Saving model to ./ckpt/squeezenet1_0-195_5004.ckpt
[2023-07-11 13:53:11] mindcv.utils.callbacks INFO - Total time since last epoch: 102.965617(train: 97.866245, val: 4.961876)s, ETA: 514.828086s
[2023-07-11 13:53:11] mindcv.utils.callbacks INFO - --------------------------------------------------------------------------------
[2023-07-11 13:54:49] mindcv.utils.callbacks INFO - Epoch: [196/200], batch: [5004/5004], loss: 6.907755, lr: 0.000099, time: 98.291733s
[2023-07-11 13:54:54] mindcv.utils.callbacks INFO - Validation Top_1_Accuracy: 0.1000%, Top_5_Accuracy: 0.5000%, time: 4.957407s
[2023-07-11 13:54:54] mindcv.utils.callbacks INFO - Saving model to ./ckpt/squeezenet1_0-196_5004.ckpt
[2023-07-11 13:54:54] mindcv.utils.callbacks INFO - Total time since last epoch: 103.394972(train: 98.297709, val: 4.957407)s, ETA: 413.579886s
[2023-07-11 13:54:54] mindcv.utils.callbacks INFO - --------------------------------------------------------------------------------
[2023-07-11 13:56:34] mindcv.utils.callbacks INFO - Epoch: [197/200], batch: [5004/5004], loss: 6.907755, lr: 0.000056, time: 99.201918s
[2023-07-11 13:56:38] mindcv.utils.callbacks INFO - Validation Top_1_Accuracy: 0.1000%, Top_5_Accuracy: 0.5000%, time: 4.923371s
[2023-07-11 13:56:39] mindcv.utils.callbacks INFO - Saving model to ./ckpt/squeezenet1_0-197_5004.ckpt
[2023-07-11 13:56:39] mindcv.utils.callbacks INFO - Total time since last epoch: 104.277067(train: 99.208602, val: 4.923371)s, ETA: 312.831202s
[2023-07-11 13:56:39] mindcv.utils.callbacks INFO - --------------------------------------------------------------------------------
[2023-07-11 13:58:17] mindcv.utils.callbacks INFO - Epoch: [198/200], batch: [5004/5004], loss: 6.907755, lr: 0.000025, time: 98.811944s
[2023-07-11 13:58:22] mindcv.utils.callbacks INFO - Validation Top_1_Accuracy: 0.1000%, Top_5_Accuracy: 0.5000%, time: 4.935712s
[2023-07-11 13:58:22] mindcv.utils.callbacks INFO - Saving model to ./ckpt/squeezenet1_0-198_5004.ckpt
[2023-07-11 13:58:23] mindcv.utils.callbacks INFO - Total time since last epoch: 103.892637(train: 98.817379, val: 4.935712)s, ETA: 207.785274s
[2023-07-11 13:58:23] mindcv.utils.callbacks INFO - --------------------------------------------------------------------------------
[2023-07-11 14:00:01] mindcv.utils.callbacks INFO - Epoch: [199/200], batch: [5004/5004], loss: 6.907755, lr: 0.000006, time: 98.633017s
[2023-07-11 14:00:06] mindcv.utils.callbacks INFO - Validation Top_1_Accuracy: 0.1000%, Top_5_Accuracy: 0.5000%, time: 4.964054s
[2023-07-11 14:00:06] mindcv.utils.callbacks INFO - Saving model to ./ckpt/squeezenet1_0-199_5004.ckpt
[2023-07-11 14:00:06] mindcv.utils.callbacks INFO - Total time since last epoch: 103.742033(train: 98.637943, val: 4.964054)s, ETA: 103.742033s
[2023-07-11 14:00:06] mindcv.utils.callbacks INFO - --------------------------------------------------------------------------------
[2023-07-11 14:01:45] mindcv.utils.callbacks INFO - Epoch: [200/200], batch: [5004/5004], loss: 6.907755, lr: 0.000000, time: 99.083169s
[2023-07-11 14:01:50] mindcv.utils.callbacks INFO - Validation Top_1_Accuracy: 0.1000%, Top_5_Accuracy: 0.5000%, time: 4.841324s
[2023-07-11 14:01:50] mindcv.utils.callbacks INFO - Saving model to ./ckpt/squeezenet1_0-200_5004.ckpt
[2023-07-11 14:01:50] mindcv.utils.callbacks INFO - Total time since last epoch: 104.066254(train: 99.087659, val: 4.841324)s, ETA: 0.000000s
[2023-07-11 14:01:50] mindcv.utils.callbacks INFO - --------------------------------------------------------------------------------
[2023-07-11 14:01:50] mindcv.utils.callbacks INFO - Finish training!
[2023-07-11 14:01:50] mindcv.utils.callbacks INFO - The best validation Top_1_Accuracy is: 0.1000% at epoch 1.
[2023-07-11 14:01:51] mindcv.utils.callbacks INFO - ================================================================================
Additional context / 备注 (Optional / 选填)
Add any other context about the problem here.
The text was updated successfully, but these errors were encountered: