-
Notifications
You must be signed in to change notification settings - Fork 24
/
Q.ml
339 lines (287 loc) · 10.8 KB
/
Q.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
open Printf
type matrix = float array array
let validate ?(tol=1e-6) q =
let n = Array.length q
if n < 2 then invalid_arg "CamlPaml.Q.validate: trivial matrix"
Array.iteri
fun i qi ->
if Array.length qi <> n then invalid_arg "CamlPaml.Q.validate: non-square matrix"
let rowsum = ref 0.
for j = 0 to n-1 do
if i <> j && qi.(j) < 0. then invalid_arg (sprintf "CamlPaml.Q.validate: Q[%d,%d] = %.2e < 0" i j qi.(j))
rowsum := !rowsum +. qi.(j)
if abs_float !rowsum > tol then invalid_arg (sprintf "CamlPaml.Q.validate: sum(Q[%d,]) = %.2e != 0" i !rowsum)
q
let check_real ?(tol=1e-6) ({ Complex.re = re; Complex.im = im } as z) = im = 0. || (abs_float im) *. 1000. < (Complex.norm z) || (abs_float re < tol && abs_float im < tol)
let real_of_complex ?(tol=1e-6) z =
if not (check_real ~tol:tol z) then
failwith (sprintf "CamlPaml.Q.real_of_complex %g+%gi" z.Complex.re z.Complex.im)
z.Complex.re
let m_of_cm cm = Gsl.Matrix.of_arrays (Array.map (Array.map real_of_complex) (Gsl.Matrix_complex.to_arrays cm))
let cm_of_m m = Gsl.Matrix_complex.of_arrays (Array.map (Array.map (fun re -> { Complex.re = re; im = 0. })) (Gsl.Matrix.to_arrays m))
let v_of_cv cv = Gsl.Vector.of_array (Array.map real_of_complex (Gsl.Vector_complex.to_array cv))
let gemm ?c a b =
let m,n = Gsl.Matrix.dims a
let n',p = Gsl.Matrix.dims b
if n <> n' then invalid_arg "CamlPaml.Q.gemm: incompatible dimensions"
let c = match c with
| Some c -> c
| None -> Gsl.Matrix.create m p
Gsl.Blas.gemm ~ta:Gsl.Blas.NoTrans ~tb:Gsl.Blas.NoTrans ~alpha:1. ~a:a ~b:b ~beta:0. ~c:c
c
let zgemm ?c a b =
let m,n = Gsl.Matrix_complex.dims a
let n',p = Gsl.Matrix_complex.dims b
if n <> n' then invalid_arg "CamlPaml.Q.zgemm: incompatible dimensions"
let c = match c with
| Some c -> c
| None -> Gsl.Matrix_complex.create m p
Gsl.Blas.Complex.gemm ~ta:Gsl.Blas.NoTrans ~tb:Gsl.Blas.NoTrans ~alpha:Complex.one ~a:a ~b:b ~beta:Complex.zero ~c:c
c
let diagm ?c d a =
let m = Gsl.Vector.length d
let (n,p) = Gsl.Matrix.dims a
if m <> n then invalid_arg "CamlPaml.Q.diagm: incompatible dimensions"
let c = match c with
| Some c -> c
| None -> Gsl.Matrix.create m p
for i = 0 to m-1 do
let d_i = d.{i}
for j = 0 to p-1 do
Bigarray.Array2.unsafe_set c i j (Bigarray.Array2.unsafe_get a i j *. d_i)
c
let zdiagm ?c d a =
let m = Gsl.Vector_complex.length d
let (n,p) = Gsl.Matrix_complex.dims a
if m <> n then invalid_arg "CamlPaml.Q.diagm: incompatible dimensions"
let c = match c with
| Some c -> c
| None -> Gsl.Matrix_complex.create m p
for i = 0 to m-1 do
let d_i = d.{i}
for j = 0 to p-1 do
Bigarray.Array2.unsafe_set c i j (Complex.mul (Bigarray.Array2.unsafe_get a i j) d_i)
c
let zinvm m =
let n,n' = Gsl.Matrix_complex.dims m
if n <> n' then invalid_arg "CamlPaml.Q.zinvm: non-square matrix"
let p = Gsl.Permut.make n
let lu = Gsl.Vectmat.cmat_convert (`CM (Gsl.Matrix_complex.copy m))
ignore (Gsl.Linalg.complex_LU_decomp lu p)
let m' = Gsl.Vectmat.cmat_convert (`CM (Gsl.Matrix_complex.create n n))
Gsl.Linalg.complex_LU_invert lu p m'
match m' with
| `CM x -> x
| _ -> assert false
module Diag = struct
(* diagonalized Q = S*L*S'
These are real for reversible models, complex for non-reversible models. *)
type eig_r = {
r_s : Gsl.Matrix.matrix; (* S = right eigenvectors (in the columns) *)
r_s' : Gsl.Matrix.matrix; (* S' = left eigenvectors (in the rows) *)
r_l : Gsl.Vector.vector (* diag(L) = eigenvalues *)
}
type eig_nr = {
nr_s : Gsl.Matrix_complex.matrix; (* S = right eigenvectors (in the columns) *)
nr_s' : Gsl.Matrix_complex.matrix; (* S' = left eigenvectors (in the rows) *)
nr_l : Gsl.Vector_complex.vector; (* diag(L) = eigenvalues *)
}
type t = {
q : Gsl.Matrix.matrix; (* Q *)
eig : [`r of eig_r | `nr of eig_nr];
pi : Gsl.Vector.vector;
mutable have_pi : bool;
mutable memoized_to_Pt : (float -> Gsl.Matrix.matrix) option;
mutable tol : float;
}
let dim q =
let (n,n') = Gsl.Matrix.dims q.q
assert (n = n')
n
let of_Q ?(tol=1e-6) ?(force_complex=false) qm =
let qm = Gsl.Matrix.of_arrays qm
let l, s = Gsl.Eigen.nonsymmv ~protect:true (`M qm)
let s' = zinvm s
let rev = ref true
let n = Gsl.Vector_complex.length l
for i = 0 to n-1 do if not (check_real ~tol l.{i}) then rev := false
let eig =
if !rev && not force_complex then
`r { r_s = m_of_cm s; r_s' = m_of_cm s'; r_l = v_of_cv l }
else
`nr { nr_s = s; nr_s' = s'; nr_l = l }
{ q = qm; eig;
pi = Gsl.Vector.create (fst (Gsl.Matrix.dims qm)); have_pi = false;
memoized_to_Pt = None; tol = tol }
let to_Q q = Gsl.Matrix.to_arrays q.q
let reversible = function
| { eig = `r _ } -> true
| { eig = `nr { nr_l }; tol } ->
let rev = ref true
let n = Gsl.Vector_complex.length nr_l
for i = 0 to n-1 do if not (check_real ~tol:tol nr_l.{i}) then rev := false
!rev
let equilibrium q =
if not q.have_pi then
let eig = match q.eig with
| `r eig -> eig
| `nr { nr_s; nr_s'; nr_l } when reversible q -> { r_s = m_of_cm nr_s; r_s' = m_of_cm nr_s'; r_l = v_of_cv nr_l }
| _ -> failwith "CamlPaml.Q.equilibrium: non-reversible model"
let n = Gsl.Vector.length eig.r_l
let min_L = ref infinity
let min_Lp = ref (-1)
for i = 0 to n-1 do
let mag_i = abs_float eig.r_l.{i}
if mag_i < !min_L then
min_L := mag_i
min_Lp := i
assert (!min_Lp >= 0)
if (abs_float !min_L) > q.tol then
failwith (sprintf "CamlPaml.Q.equilibrium: smallest-magnitude eigenvalue %e is unacceptably large; check rate matrix validity or increase tol" !min_L)
let lev = Gsl.Matrix.row eig.r_s' !min_Lp
let mass = ref 0.
for i = 0 to n-1 do
mass := !mass +. lev.{i}
for i = 0 to n-1 do
q.pi.{i} <- lev.{i} /. !mass
q.have_pi <- true
Gsl.Vector.to_array q.pi
(** normalize to unity mean rate of replacement
let normalize ?tol q =
let n = Gsl.Vector_complex.length q.l
let pi = equilibrium ?tol q
let tot = ref 0.
for i = 0 to n-1 do
tot := !tot +. (-1.) *. pi.(i) *. q.q.{i,i}
let nq = Gsl.Matrix.copy q.q
Gsl.Matrix.scale q.q (1. /. !tot)
let nl = Gsl.Vector_complex.copy q.l
for i = 0 to n-1 do
nl.{i} <- Complex.div nl.{i} { Complex.re = !tot; im = 0. }
{ q with q = nq; l = nl } *)
let scale q x =
if x <= 0. then invalid_arg "CamlPaml.Q.scale: nonpositive scale factor"
let xq = Gsl.Matrix.copy q.q
Gsl.Matrix.scale xq x
let xeig = match q.eig with
| `r { r_s; r_s'; r_l } ->
let xl = Gsl.Vector.copy r_l
for i = 0 to (Gsl.Vector.length xl) - 1 do
xl.{i} <- xl.{i} *. x
`r { r_s; r_s'; r_l = xl }
| `nr { nr_s; nr_s'; nr_l } ->
let xl = Gsl.Vector_complex.copy nr_l
let cx = { Complex.re = x; im = 0. }
for i = 0 to (Gsl.Vector_complex.length xl) - 1 do
xl.{i} <- Complex.mul xl.{i} cx
`nr { nr_s; nr_s'; nr_l = xl }
{ q with q = xq; eig = xeig; memoized_to_Pt = None }
let real_to_Pt q t =
if t < 0. then invalid_arg "CamlPaml.Q.to_Pt"
let sm = match q.eig with
| `r { r_s; r_s'; r_l } ->
let expLt = Gsl.Vector.copy r_l
for i = 0 to Gsl.Vector.length expLt - 1 do
expLt.{i} <- exp (t *. expLt.{i})
gemm r_s (diagm expLt r_s')
| `nr { nr_s; nr_s'; nr_l } ->
let ct = { Complex.re = t; im = 0. }
let expLt = Gsl.Vector_complex.copy nr_l
for i = 0 to Gsl.Vector_complex.length expLt - 1 do
expLt.{i} <- Complex.exp (Complex.mul ct expLt.{i})
m_of_cm (zgemm nr_s (zdiagm expLt nr_s'))
let n,_ = Gsl.Matrix.dims sm
for i = 0 to n-1 do
let tot = ref 0.
let smii = ref 1.
for j = 0 to n-1 do
tot := !tot +. sm.{i,j}
if sm.{i,j} < 0. then
if abs_float sm.{i,j} > q.tol then
failwith (sprintf "CamlPaml.Q.substition_matrix: expm(%.2e*Q)[%d,%d] = %e < 0" t i j sm.{i,j})
else
sm.{i,j} <- 0.
if i <> j then
smii := !smii -. sm.{i,j}
if abs_float (!tot -. 1.) > q.tol then
failwith (sprintf "CamlPaml.Q.substitution matrix: sum(expm(%.2e*Q)[%d,] = %e > 1" t i !tot)
assert (!smii <= 1. && !smii > 0.)
sm.{i,i} <- !smii
sm
let rec to_Pt q t =
match q.memoized_to_Pt with
| Some f -> f t
| None ->
q.memoized_to_Pt <- Some (Tools.weakly_memoize (real_to_Pt q))
to_Pt q t
let to_Pt_gc q = q.memoized_to_Pt <- None
let dPt_dt ~q ~t = match q.eig with
| `r _ -> failwith "not implemented"
| `nr { nr_s; nr_s'; nr_l } ->
let n,_ = Gsl.Matrix.dims q.q
let (( * ),(+),(/)) = Complex.mul, Complex.add, Complex.div
let exp= Complex.exp
let s, l, s' = nr_s, nr_l, nr_s'
let ct = { Complex.re = t; Complex.im = 0. }
Array.init n
fun a ->
Array.init n
fun b ->
let x = ref Complex.zero
for c = 0 to n-1 do
x := !x + (s.{a,c} * l.{c} * (exp (l.{c} * ct)) * s'.{c,b})
real_of_complex !x
(* TODO in richly parameterized models, dQ_dx is likely to be sparse. *)
let dPt_dQ_dx ~q ~t ~dQ_dx = match q.eig with
| `r _ -> failwith "not implemented"
| `nr { nr_s; nr_s'; nr_l } ->
let n,_ = Gsl.Matrix.dims q.q
let dQt_dx = cm_of_m (Gsl.Matrix.of_arrays dQ_dx)
if Gsl.Matrix_complex.dims dQt_dx <> Gsl.Matrix.dims q.q then
invalid_arg "CamlPaml.Q.dP_dx: wrong dimension of dQ_dx"
let ct = { Complex.re = t; Complex.im = 0. }
let exp = Complex.exp
let (( * ),(-),(/)) = Complex.mul, Complex.sub, Complex.div
(* combos 1,3 or 2 (alone) -- 1,3 matches P&S? *)
Gsl.Matrix_complex.scale dQt_dx ct (* 1 *)
let f = Gsl.Matrix_complex.create n n
for i = 0 to pred n do
for j = 0 to pred n do
if nr_l.{i} = nr_l.{j} then
f.{i,j} <- exp (nr_l.{i} * ct) (* * ct *) (* 2 *)
else
f.{i,j} <- (exp (nr_l.{i} * ct) - exp (nr_l.{j} * ct)) / ((nr_l.{i} - nr_l.{j}) * ct (* 3 *))
(* ehh not being too gentle with the allocator/GC here *)
Gsl.Matrix_complex.mul_elements f (zgemm nr_s' (zgemm dQt_dx nr_s))
Gsl.Matrix.to_arrays (m_of_cm (zgemm nr_s (zgemm f nr_s')))
let logm (m:Gsl.Matrix.matrix) =
let n,n' = Gsl.Matrix.dims m
if n <> n' then invalid_arg "CamlPaml.Q.logm: non-square matrix"
let l, s = Gsl.Eigen.nonsymmv ~protect:true (`M m)
let s' = zinvm s
for i = 0 to n-1 do
l.{i} <- Complex.log l.{i}
m_of_cm (zgemm s (zdiagm l s'))
(* Correction of a square matrix with zero row-sums but potentially negative off-diagonal entries into a valid rate matrix. As suggested by Israel, Rosenthal & Wei (2001) *)
let irw2001 rawq =
let n,n' = Gsl.Matrix.dims rawq
assert (n = n')
for i = 0 to n-1 do
let g_i = ref (abs_float rawq.{i,i})
let b_i = ref 0.
for j = 0 to n-1 do
if i <> j then
if rawq.{i,j} >= 0. then
g_i := !g_i +. rawq.{i,j}
else
b_i := !b_i -. rawq.{i,j}
for j = 0 to n-1 do
let rawqij = rawq.{i,j}
if i <> j && rawqij < 0. then
rawq.{i,j} <- 0.
else if !g_i > 0. then
rawq.{i,j} <- rawqij -. !b_i *. (abs_float rawqij) /. !g_i
rawq
let of_P ?tol m =
P.validate ?tol m
Gsl.Matrix.to_arrays (irw2001 (logm m))