We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Code to reproduce the issue
from river import metrics from river.utils import Rolling from river.ensemble import AdaptiveRandomForestClassifier from river.datasets import ImageSegments from river import preprocessing from river import compose from ixai.explainer import IncrementalPFI, IncrementalSage, IncrementalPDP, BatchPDP, BatchSage from ixai.utils.wrappers import RiverWrapper from ixai.visualization import FeatureImportancePlotter from ixai.storage import GeometricReservoirStorage from ixai.imputer import MarginalImputer RANDOM_SEED = 42 stream = ImageSegments() for n, (x, y) in enumerate(stream): print(x) print(y) feature_names = list(x.keys()) if n>0: break model = compose.Pipeline( preprocessing.StandardScaler() | AdaptiveRandomForestClassifier(seed=RANDOM_SEED) ) #model = AdaptiveRandomForestRegressor(seed=RANDOM_SEED) model_function = RiverWrapper(model.predict_one) loss_metric = metrics.Accuracy() training_metric = Rolling(metrics.Accuracy(), window_size=1000) storage = GeometricReservoirStorage( size=500, store_targets=False ) imputer = MarginalImputer( model_function=model_function, storage_object=storage, sampling_strategy="joint" ) incremental_pfi = IncrementalPFI( model_function=model_function, loss_function=loss_metric, feature_names=feature_names, smoothing_alpha=0.01, n_inner_samples=4, imputer=imputer, storage=storage ) incremental_sage = IncrementalSage( model_function=model_function, loss_function=loss_metric, imputer=imputer, storage=storage, feature_names=feature_names, smoothing_alpha=0.01, n_inner_samples=4 ) incremental_pdp = IncrementalPDP( model_function=model_function, gridsize=8, dynamic_setting=True, smoothing_alpha=0.01, pdp_feature='region-centroid-row', storage=storage, storage_size=100, is_classification=True, output_key='cement' ) for (n, (x_i, y_i)) in enumerate(stream, start=1): x_i = dict((k, x_i[k]) for k in feature_names) y_i_pred = model.predict_one(x_i) #print(y_i_pred) training_metric.update(y_true=y_i, y_pred=y_i_pred) # explaining inc_sage = incremental_sage.explain_one(x_i, y_i) inc_fi_pfi = incremental_pfi.explain_one(x_i, y_i, update_storage=False) inc_pdp = incremental_pdp.explain_one(x_i, update_storage=False) # learning model.learn_one(x_i, y_i) #print("Here") if n % 250 == 0: print(f"{n}: perf {training_metric.get()}\n" f"{n}: sage {incremental_sage.importance_values}\n" f"{n}: pfi {incremental_pfi.importance_values}\n") if n >= 330: incremental_pdp.plot_pdp() break
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Code to reproduce the issue
The text was updated successfully, but these errors were encountered: