Skip to content
A python class to generate simple LaTeX regression tables
Python TeX
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.


Type Name Latest commit message Commit time
Failed to load latest commit information.


This class offers an easy way to transform Python regression output (linearmodels, statsmodels) into a LaTeX table. Moreover, it allows to combine multiple regression models into a unified table. An example table is presented below.


To use the class, create an instance of a class instance with table features, variables names, and variables order passed as parameters.

import texression

tx = texression.texression(varnames, varorder, ltcaption = """First stage of 2SLS regression.""")

Here varnames is a dictionary that converts variable names into human readable (the ones that appear in the LaTeX table) variable names.

varnames = {'t1' : '$Russell 2000_{t}$',
            't0' : '$Russell 2000_{t-1}$',
            'banded' : 'Banded state',
            'banded_t1' : 'Banded state $\\times Russell 2000_{t}$'

And varorder is a list that determines the order of variables appearing in the table.

varorder = ['t1', 't0', 'banded', 'banded_t1',
           {'name' : 'Firm controls', 'type' : 'controls',
            'vars' :['NonIndxOwn', 'ISSrec_For', 'log_atq', 'roa', 'bm_ratio', 'firm_leverage']},
           {'name' : 'Year controls', 'type' : 'controls',
            'vars' : ['y_2010', 'y_2011', 'y_2012', 'y_2013', 'y_2014', 'y_2015', 'y_2016']},
           {'name' : 'Float and mk.cap. controls', 'type' : 'controls',
            'vars' : ['mkcap', 'float_value_t1']},
           {'type' : 'silent', 'vars' : ['const']}]

The varorder parameter also allows to group variables (if complete group is present, then "Yes" is displayed) under an alternative caption; and to forcibly hide variables from being shown (if regression contains variable not mentioned in varnames/varorder then it is still displayed in the table).

Once an class instance is created, it can absorb regression results with add_regression method:

from linearmodels import OLS

tx.add_regression(OLS(...).fit(), 'Similarity measure')
tx.add_regression(OLS(...).fit(), '\% owned by index funds')

And then save the constructed LaTeX table to file with the latex method:

tx.latex('FSLS_presentation.tex') # saves LaTeX table to 'FSLS_presentation.tex' file


  • Multiple regressions per table
  • Ordering of variables and human readable variables' names
  • Ability to group sets of variables to save space (e.g. controls)
  • Ability to hide variables from being displayed (e.g. constant)
  • Centering of values displayed "by the dot"
  • Multi-page support
  • Table sectioning

Examples are available in this pdf.

You can’t perform that action at this time.