-
Notifications
You must be signed in to change notification settings - Fork 26
/
test_ctc.py
135 lines (118 loc) · 4.3 KB
/
test_ctc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import theano
import numpy
from theano import tensor
from blocks.model import Model
from blocks.bricks import Linear, Tanh
from ctc_cost import CTC
from blocks.initialization import IsotropicGaussian, Constant
from fuel.datasets import IterableDataset
from fuel.streams import DataStream
from blocks.algorithms import (GradientDescent, Scale,
StepClipping, CompositeRule)
from blocks.extensions.monitoring import TrainingDataMonitoring
from blocks.main_loop import MainLoop
from blocks.extensions import FinishAfter, Printing
from blocks.bricks.recurrent import SimpleRecurrent
from blocks.graph import ComputationGraph
try:
import cPickle as pickle
except:
import pickle
floatX = theano.config.floatX
@theano.compile.ops.as_op(itypes=[tensor.lvector],
otypes=[tensor.lvector])
def print_pred(y_hat):
blank_symbol = 4
res = []
for i, s in enumerate(y_hat):
if (s != blank_symbol) and (i == 0 or s != y_hat[i - 1]):
res += [s]
return numpy.asarray(res)
n_epochs = 200
x_dim = 4
h_dim = 9
num_classes = 4
with open("ctc_test_data.pkl", "rb") as pkl_file:
try:
data = pickle.load(pkl_file)
inputs = data['inputs']
labels = data['labels']
# from S x T x B x D to S x T x B
inputs_mask = numpy.max(data['mask_inputs'], axis=-1)
labels_mask = data['mask_labels']
except:
data = pickle.load(pkl_file, encoding='bytes')
inputs = data[b'inputs']
labels = data[b'labels']
# from S x T x B x D to S x T x B
inputs_mask = numpy.max(data[b'mask_inputs'], axis=-1)
labels_mask = data[b'mask_labels']
print('Building model ...')
# T x B x F
x = tensor.tensor3('x', dtype=floatX)
# T x B
x_mask = tensor.matrix('x_mask', dtype=floatX)
# L x B
y = tensor.matrix('y', dtype=floatX)
# L x B
y_mask = tensor.matrix('y_mask', dtype=floatX)
x_to_h = Linear(name='x_to_h',
input_dim=x_dim,
output_dim=h_dim)
x_transform = x_to_h.apply(x)
rnn = SimpleRecurrent(activation=Tanh(),
dim=h_dim, name="rnn")
h = rnn.apply(x_transform)
h_to_o = Linear(name='h_to_o',
input_dim=h_dim,
output_dim=num_classes + 1)
h_transform = h_to_o.apply(h)
# T x B x C+1
y_hat = tensor.nnet.softmax(
h_transform.reshape((-1, num_classes + 1))
).reshape((h.shape[0], h.shape[1], -1))
y_hat.name = 'y_hat'
y_hat_mask = x_mask
cost = CTC().apply(y, y_hat, y_mask, y_hat_mask, 'normal_scale')
cost.name = 'CTC'
# Initialization
for brick in (rnn, x_to_h, h_to_o):
brick.weights_init = IsotropicGaussian(0.01)
brick.biases_init = Constant(0)
brick.initialize()
print('Bulding DataStream ...')
dataset = IterableDataset({'x': inputs,
'x_mask': inputs_mask,
'y': labels,
'y_mask': labels_mask})
stream = DataStream(dataset)
print('Bulding training process...')
algorithm = GradientDescent(cost=cost,
params=ComputationGraph(cost).parameters,
step_rule=CompositeRule([StepClipping(10.0),
Scale(0.02)]))
monitor_cost = TrainingDataMonitoring([cost],
prefix="train",
after_epoch=True)
# sample number to monitor
sample = 8
y_hat_max_path = print_pred(tensor.argmax(y_hat[:, sample, :], axis=1))
y_hat_max_path.name = 'Viterbi'
monitor_output = TrainingDataMonitoring([y_hat_max_path],
prefix="y_hat",
every_n_epochs=1)
length = tensor.sum(y_mask[:, sample]).astype('int32')
tar = y[:length, sample].astype('int32')
tar.name = '_Target_Seq'
monitor_target = TrainingDataMonitoring([tar],
prefix="y",
every_n_epochs=1)
model = Model(cost)
main_loop = MainLoop(data_stream=stream, algorithm=algorithm,
extensions=[monitor_cost, monitor_output,
monitor_target,
FinishAfter(after_n_epochs=n_epochs),
Printing()],
model=model)
print('Starting training ...')
main_loop.run()