-
Dangle: A new family of architectures with specialized encoding that deliver more disentangled representations and better compositional generalization than Transoformer. The implementation is based on fairseq
-
ReaCT: A new real-world machine translation benchmark for compositional generalization.
Disentangled Sequence to Sequence Learning for Compositional Generalization ACL 2022
Real-World Compositional Generalization with Disentangled Sequence-to-Sequence Learning ACL 2023
@inproceedings{hao2022dangle,
title={Disentangled Sequence to Sequence Learning for Compositional Generalization},
author={Hao Zheng and Mirella Lapata},
booktitle={Association for Computational Linguistics (ACL)},
year={2022}
}
@inproceedings{zheng-lapata-2023-real,
title = {Real-World Compositional Generalization with Disentangled Sequence-to-Sequence Learning},
author = {Zheng, Hao and
Lapata, Mirella},
booktitle = {Findings of the Association for Computational Linguistics (ACL)},
year = "2023",
}
conda create -n dangle python=3.7
pip install -r requirements.txt -f https://download.pytorch.org/whl/cu113/torch_stable.html
#install fairseq
cd fairseq
pip install --editable ./
#install apex
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
--global-option="--deprecated_fused_adam" --global-option="--xentropy" \
--global-option="--fast_multihead_attn" ./
- COGS: Download the dataset (https://github.com/najoungkim/COGS) and run
./preprocess_cogs.sh path/to/COGS
: - CFQ: Download the dataset (https://storage.cloud.google.com/cfq_dataset/cfq1.1.tar.gz) and run
./preprocess_cogs.sh path/to/CFQ
: - CoGnition: Download the dataset (https://github.com/yafuly/CoGnition) and run
./preprocess_cogs.sh path/to/CoGnition
:
#COGS
./run_cogs.sh MODEL SEED RECURSION DATADIR
#CFQ
./run_cfq.sh MODEL SEED SPLIT DATADIR
#CoGnition
./run_cognition.sh MODEL SEED DATADIR
#ReaCT
./run_react.sh MODEL SEED ...