You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
BERT-type: uncased_L-12_H-768_A-12
Batch_size = 32
BERT parameters:
learning rate: 1e-05
Fine-tune BERT: True
vocab size: 30522
hidden_size: 768
num_hidden_layer: 12
num_attention_heads: 12
hidden_act: gelu
intermediate_size: 3072
hidden_dropout_prob: 0.1
attention_probs_dropout_prob: 0.1
max_position_embeddings: 512
type_vocab_size: 2
initializer_range: 0.02
Load pre-trained parameters.
Seq-to-SQL: the number of final BERT layers to be used: 2
Seq-to-SQL: the size of hidden dimension = 100
Seq-to-SQL: LSTM encoding layer size = 2
Seq-to-SQL: dropout rate = 0.3
Seq-to-SQL: learning rate = 0.001
/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/functional.py:1386: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.
warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")
^C
Traceback (most recent call last):
File "train.py", line 605, in
dset_name='train')
File "train.py", line 241, in train
num_out_layers_n=num_target_layers, num_out_layers_h=num_target_layers)
File "/home/leftnoteasy/borde/sqlova/sqlova/utils/utils_wikisql.py", line 817, in get_wemb_bert
nlu_tt, t_to_tt_idx, tt_to_t_idx = get_bert_output(model_bert, tokenizer, nlu_t, hds, max_seq_length)
File "/home/leftnoteasy/borde/sqlova/sqlova/utils/utils_wikisql.py", line 751, in get_bert_output
all_encoder_layer, pooled_output = model_bert(all_input_ids, all_segment_ids, all_input_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 396, in forward
all_encoder_layers = self.encoder(embedding_output, extended_attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 326, in forward
hidden_states = layer_module(hidden_states, attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 311, in forward
attention_output = self.attention(hidden_states, attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 272, in forward
self_output = self.self(input_tensor, attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 215, in forward
mixed_query_layer = self.query(hidden_states)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 92, in forward
return F.linear(input, self.weight, self.bias)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/functional.py", line 1408, in linear
output = input.matmul(weight.t())
KeyboardInterrupt
^C
The text was updated successfully, but these errors were encountered:
➜ sqlova git:(master) python3 train.py --seed 1 --bS 16 --accumulate_gradients 2 --bert_type_abb uS --fine_tune --lr 0.001 --lr_bert 0.00001 --max_seq_leng 222
BERT-type: uncased_L-12_H-768_A-12
Batch_size = 32
BERT parameters:
learning rate: 1e-05
Fine-tune BERT: True
vocab size: 30522
hidden_size: 768
num_hidden_layer: 12
num_attention_heads: 12
hidden_act: gelu
intermediate_size: 3072
hidden_dropout_prob: 0.1
attention_probs_dropout_prob: 0.1
max_position_embeddings: 512
type_vocab_size: 2
initializer_range: 0.02
Load pre-trained parameters.
Seq-to-SQL: the number of final BERT layers to be used: 2
Seq-to-SQL: the size of hidden dimension = 100
Seq-to-SQL: LSTM encoding layer size = 2
Seq-to-SQL: dropout rate = 0.3
Seq-to-SQL: learning rate = 0.001
/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/functional.py:1386: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.
warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")
^C
Traceback (most recent call last):
File "train.py", line 605, in
dset_name='train')
File "train.py", line 241, in train
num_out_layers_n=num_target_layers, num_out_layers_h=num_target_layers)
File "/home/leftnoteasy/borde/sqlova/sqlova/utils/utils_wikisql.py", line 817, in get_wemb_bert
nlu_tt, t_to_tt_idx, tt_to_t_idx = get_bert_output(model_bert, tokenizer, nlu_t, hds, max_seq_length)
File "/home/leftnoteasy/borde/sqlova/sqlova/utils/utils_wikisql.py", line 751, in get_bert_output
all_encoder_layer, pooled_output = model_bert(all_input_ids, all_segment_ids, all_input_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 396, in forward
all_encoder_layers = self.encoder(embedding_output, extended_attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 326, in forward
hidden_states = layer_module(hidden_states, attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 311, in forward
attention_output = self.attention(hidden_states, attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 272, in forward
self_output = self.self(input_tensor, attention_mask)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/borde/sqlova/bert/modeling.py", line 215, in forward
mixed_query_layer = self.query(hidden_states)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in call
result = self.forward(*input, **kwargs)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 92, in forward
return F.linear(input, self.weight, self.bias)
File "/home/leftnoteasy/miniconda3/lib/python3.7/site-packages/torch/nn/functional.py", line 1408, in linear
output = input.matmul(weight.t())
KeyboardInterrupt
^C
The text was updated successfully, but these errors were encountered: