forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
selector.go
682 lines (619 loc) · 19 KB
/
selector.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
Copyright 2014 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package labels
import (
"bytes"
"fmt"
"sort"
"strings"
"k8s.io/kubernetes/pkg/util/fielderrors"
"k8s.io/kubernetes/pkg/util/sets"
"k8s.io/kubernetes/pkg/util/validation"
)
// Selector represents a label selector.
type Selector interface {
// Matches returns true if this selector matches the given set of labels.
Matches(Labels) bool
// Empty returns true if this selector does not restrict the selection space.
Empty() bool
// String returns a human readable string that represents this selector.
String() string
// Add add a specific requirement for the selector
Add(key string, operator Operator, values []string) Selector
}
// Everything returns a selector that matches all labels.
func Everything() Selector {
return LabelSelector{}
}
// Operator represents a key's relationship
// to a set of values in a Requirement.
type Operator string
const (
EqualsOperator Operator = "="
DoubleEqualsOperator Operator = "=="
InOperator Operator = "in"
NotEqualsOperator Operator = "!="
NotInOperator Operator = "notin"
ExistsOperator Operator = "exists"
)
//LabelSelector is a list of Requirements.
type LabelSelector []Requirement
// Sort by obtain determisitic parser
type ByKey []Requirement
func (a ByKey) Len() int { return len(a) }
func (a ByKey) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByKey) Less(i, j int) bool { return a[i].key < a[j].key }
// Requirement is a selector that contains values, a key
// and an operator that relates the key and values. The zero
// value of Requirement is invalid.
// Requirement implements both set based match and exact match
// Requirement is initialized via NewRequirement constructor for creating a valid Requirement.
type Requirement struct {
key string
operator Operator
strValues sets.String
}
// NewRequirement is the constructor for a Requirement.
// If any of these rules is violated, an error is returned:
// (1) The operator can only be In, NotIn or Exists.
// (2) If the operator is In or NotIn, the values set must
// be non-empty.
// (3) The key is invalid due to its length, or sequence
// of characters. See validateLabelKey for more details.
//
// The empty string is a valid value in the input values set.
func NewRequirement(key string, op Operator, vals sets.String) (*Requirement, error) {
if err := validateLabelKey(key); err != nil {
return nil, err
}
switch op {
case InOperator, NotInOperator:
if len(vals) == 0 {
return nil, fmt.Errorf("for 'in', 'notin' operators, values set can't be empty")
}
case EqualsOperator, DoubleEqualsOperator, NotEqualsOperator:
if len(vals) != 1 {
return nil, fmt.Errorf("exact match compatibility requires one single value")
}
case ExistsOperator:
default:
return nil, fmt.Errorf("operator '%v' is not recognized", op)
}
for v := range vals {
if err := validateLabelValue(v); err != nil {
return nil, err
}
}
return &Requirement{key: key, operator: op, strValues: vals}, nil
}
// Matches returns true if the Requirement matches the input Labels.
// There is a match in the following cases:
// (1) The operator is Exists and Labels has the Requirement's key.
// (2) The operator is In, Labels has the Requirement's key and Labels'
// value for that key is in Requirement's value set.
// (3) The operator is NotIn, Labels has the Requirement's key and
// Labels' value for that key is not in Requirement's value set.
// (4) The operator is NotIn and Labels does not have the
// Requirement's key.
func (r *Requirement) Matches(ls Labels) bool {
switch r.operator {
case InOperator, EqualsOperator, DoubleEqualsOperator:
if !ls.Has(r.key) {
return false
}
return r.strValues.Has(ls.Get(r.key))
case NotInOperator, NotEqualsOperator:
if !ls.Has(r.key) {
return true
}
return !r.strValues.Has(ls.Get(r.key))
case ExistsOperator:
return ls.Has(r.key)
default:
return false
}
}
// Return true if the LabelSelector doesn't restrict selection space
func (lsel LabelSelector) Empty() bool {
if lsel == nil {
return true
}
return len(lsel) == 0
}
// String returns a human-readable string that represents this
// Requirement. If called on an invalid Requirement, an error is
// returned. See NewRequirement for creating a valid Requirement.
func (r *Requirement) String() string {
var buffer bytes.Buffer
buffer.WriteString(r.key)
switch r.operator {
case EqualsOperator:
buffer.WriteString("=")
case DoubleEqualsOperator:
buffer.WriteString("==")
case NotEqualsOperator:
buffer.WriteString("!=")
case InOperator:
buffer.WriteString(" in ")
case NotInOperator:
buffer.WriteString(" notin ")
case ExistsOperator:
return buffer.String()
}
switch r.operator {
case InOperator, NotInOperator:
buffer.WriteString("(")
}
if len(r.strValues) == 1 {
buffer.WriteString(r.strValues.List()[0])
} else { // only > 1 since == 0 prohibited by NewRequirement
buffer.WriteString(strings.Join(r.strValues.List(), ","))
}
switch r.operator {
case InOperator, NotInOperator:
buffer.WriteString(")")
}
return buffer.String()
}
// Add adds a requirement to the selector. It copies the current selector returning a new one
func (lsel LabelSelector) Add(key string, operator Operator, values []string) Selector {
var reqs []Requirement
for _, item := range lsel {
reqs = append(reqs, item)
}
if r, err := NewRequirement(key, operator, sets.NewString(values...)); err == nil {
reqs = append(reqs, *r)
}
return LabelSelector(reqs)
}
// Matches for a LabelSelector returns true if all
// its Requirements match the input Labels. If any
// Requirement does not match, false is returned.
func (lsel LabelSelector) Matches(l Labels) bool {
for _, req := range lsel {
if matches := req.Matches(l); !matches {
return false
}
}
return true
}
// String returns a comma-separated string of all
// the LabelSelector Requirements' human-readable strings.
func (lsel LabelSelector) String() string {
var reqs []string
for _, req := range lsel {
reqs = append(reqs, req.String())
}
return strings.Join(reqs, ",")
}
// constants definition for lexer token
type Token int
const (
ErrorToken Token = iota
EndOfStringToken
ClosedParToken
CommaToken
DoubleEqualsToken
EqualsToken
IdentifierToken // to represent keys and values
InToken
NotEqualsToken
NotInToken
OpenParToken
)
// string2token contains the mapping between lexer Token and token literal
// (except IdentifierToken, EndOfStringToken and ErrorToken since it makes no sense)
var string2token = map[string]Token{
")": ClosedParToken,
",": CommaToken,
"==": DoubleEqualsToken,
"=": EqualsToken,
"in": InToken,
"!=": NotEqualsToken,
"notin": NotInToken,
"(": OpenParToken,
}
// The item produced by the lexer. It contains the Token and the literal.
type ScannedItem struct {
tok Token
literal string
}
// isWhitespace returns true if the rune is a space, tab, or newline.
func isWhitespace(ch byte) bool {
return ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n'
}
// isSpecialSymbol detect if the character ch can be an operator
func isSpecialSymbol(ch byte) bool {
switch ch {
case '=', '!', '(', ')', ',':
return true
}
return false
}
// Lexer represents the Lexer struct for label selector.
// It contains necessary informationt to tokenize the input string
type Lexer struct {
// s stores the string to be tokenized
s string
// pos is the position currently tokenized
pos int
}
// read return the character currently lexed
// increment the position and check the buffer overflow
func (l *Lexer) read() (b byte) {
b = 0
if l.pos < len(l.s) {
b = l.s[l.pos]
l.pos++
}
return b
}
// unread 'undoes' the last read character
func (l *Lexer) unread() {
l.pos--
}
// scanIdOrKeyword scans string to recognize literal token (for example 'in') or an identifier.
func (l *Lexer) scanIdOrKeyword() (tok Token, lit string) {
var buffer []byte
IdentifierLoop:
for {
switch ch := l.read(); {
case ch == 0:
break IdentifierLoop
case isSpecialSymbol(ch) || isWhitespace(ch):
l.unread()
break IdentifierLoop
default:
buffer = append(buffer, ch)
}
}
s := string(buffer)
if val, ok := string2token[s]; ok { // is a literal token?
return val, s
}
return IdentifierToken, s // otherwise is an identifier
}
// scanSpecialSymbol scans string starting with special symbol.
// special symbol identify non literal operators. "!=", "==", "="
func (l *Lexer) scanSpecialSymbol() (Token, string) {
lastScannedItem := ScannedItem{}
var buffer []byte
SpecialSymbolLoop:
for {
switch ch := l.read(); {
case ch == 0:
break SpecialSymbolLoop
case isSpecialSymbol(ch):
buffer = append(buffer, ch)
if token, ok := string2token[string(buffer)]; ok {
lastScannedItem = ScannedItem{tok: token, literal: string(buffer)}
} else if lastScannedItem.tok != 0 {
l.unread()
break SpecialSymbolLoop
}
default:
l.unread()
break SpecialSymbolLoop
}
}
if lastScannedItem.tok == 0 {
return ErrorToken, fmt.Sprintf("error expected: keyword found '%s'", buffer)
}
return lastScannedItem.tok, lastScannedItem.literal
}
// skipWhiteSpaces consumes all blank characters
// returning the first non blank character
func (l *Lexer) skipWhiteSpaces(ch byte) byte {
for {
if !isWhitespace(ch) {
return ch
}
ch = l.read()
}
}
// Lex returns a pair of Token and the literal
// literal is meaningfull only for IdentifierToken token
func (l *Lexer) Lex() (tok Token, lit string) {
switch ch := l.skipWhiteSpaces(l.read()); {
case ch == 0:
return EndOfStringToken, ""
case isSpecialSymbol(ch):
l.unread()
return l.scanSpecialSymbol()
default:
l.unread()
return l.scanIdOrKeyword()
}
}
// Parser data structure contains the label selector parser data strucutre
type Parser struct {
l *Lexer
scannedItems []ScannedItem
position int
}
// Parser context represents context during parsing:
// some literal for example 'in' and 'notin' can be
// recognized as operator for example 'x in (a)' but
// it can be recognized as value for example 'value in (in)'
type ParserContext int
const (
KeyAndOperator ParserContext = iota
Values
)
// lookahead func returns the current token and string. No increment of current position
func (p *Parser) lookahead(context ParserContext) (Token, string) {
tok, lit := p.scannedItems[p.position].tok, p.scannedItems[p.position].literal
if context == Values {
switch tok {
case InToken, NotInToken:
tok = IdentifierToken
}
}
return tok, lit
}
// consume returns current token and string. Increments the the position
func (p *Parser) consume(context ParserContext) (Token, string) {
p.position++
tok, lit := p.scannedItems[p.position-1].tok, p.scannedItems[p.position-1].literal
if context == Values {
switch tok {
case InToken, NotInToken:
tok = IdentifierToken
}
}
return tok, lit
}
// scan runs through the input string and stores the ScannedItem in an array
// Parser can now lookahead and consume the tokens
func (p *Parser) scan() {
for {
token, literal := p.l.Lex()
p.scannedItems = append(p.scannedItems, ScannedItem{token, literal})
if token == EndOfStringToken {
break
}
}
}
// parse runs the left recursive descending algorithm
// on input string. It returns a list of Requirement objects.
func (p *Parser) parse() ([]Requirement, error) {
p.scan() // init scannedItems
var requirements []Requirement
for {
tok, lit := p.lookahead(Values)
switch tok {
case IdentifierToken:
r, err := p.parseRequirement()
if err != nil {
return nil, fmt.Errorf("unable to parse requirement: %v", err)
}
requirements = append(requirements, *r)
t, l := p.consume(Values)
switch t {
case EndOfStringToken:
return requirements, nil
case CommaToken:
t2, l2 := p.lookahead(Values)
if t2 != IdentifierToken {
return nil, fmt.Errorf("found '%s', expected: identifier after ','", l2)
}
default:
return nil, fmt.Errorf("found '%s', expected: ',' or 'end of string'", l)
}
case EndOfStringToken:
return requirements, nil
default:
return nil, fmt.Errorf("found '%s', expected: identifier or 'end of string'", lit)
}
}
}
func (p *Parser) parseRequirement() (*Requirement, error) {
key, operator, err := p.parseKeyAndInferOperator()
if err != nil {
return nil, err
}
if operator == ExistsOperator { // operator Exists found lookahead set checked
return NewRequirement(key, operator, nil)
}
operator, err = p.parseOperator()
if err != nil {
return nil, err
}
var values sets.String
switch operator {
case InOperator, NotInOperator:
values, err = p.parseValues()
case EqualsOperator, DoubleEqualsOperator, NotEqualsOperator:
values, err = p.parseExactValue()
}
if err != nil {
return nil, err
}
return NewRequirement(key, operator, values)
}
// parseKeyAndInferOperator parse literals.
// in case of no operator 'in, notin, ==, =, !=' are found
// the 'exists' operattor is inferred
func (p *Parser) parseKeyAndInferOperator() (string, Operator, error) {
tok, literal := p.consume(Values)
if tok != IdentifierToken {
err := fmt.Errorf("found '%s', expected: identifier", literal)
return "", "", err
}
if err := validateLabelKey(literal); err != nil {
return "", "", err
}
var operator Operator
if t, _ := p.lookahead(Values); t == EndOfStringToken || t == CommaToken {
operator = ExistsOperator
}
return literal, operator, nil
}
// parseOperator return operator and eventually matchType
// matchType can be exact
func (p *Parser) parseOperator() (op Operator, err error) {
tok, lit := p.consume(KeyAndOperator)
switch tok {
case InToken:
op = InOperator
case EqualsToken:
op = EqualsOperator
case DoubleEqualsToken:
op = DoubleEqualsOperator
case NotInToken:
op = NotInOperator
case NotEqualsToken:
op = NotEqualsOperator
default:
return "", fmt.Errorf("found '%s', expected: '=', '!=', '==', 'in', notin'", lit)
}
return op, nil
}
// parseValues parses the values for set based matching (x,y,z)
func (p *Parser) parseValues() (sets.String, error) {
tok, lit := p.consume(Values)
if tok != OpenParToken {
return nil, fmt.Errorf("found '%s' expected: '('", lit)
}
tok, lit = p.lookahead(Values)
switch tok {
case IdentifierToken, CommaToken:
s, err := p.parseIdentifiersList() // handles general cases
if err != nil {
return s, err
}
if tok, _ = p.consume(Values); tok != ClosedParToken {
return nil, fmt.Errorf("found '%s', expected: ')'", lit)
}
return s, nil
case ClosedParToken: // handles "()"
p.consume(Values)
return sets.NewString(""), nil
default:
return nil, fmt.Errorf("found '%s', expected: ',', ')' or identifier", lit)
}
}
// parseIdentifiersList parses a (possibly empty) list of
// of comma separated (possibly empty) identifiers
func (p *Parser) parseIdentifiersList() (sets.String, error) {
s := sets.NewString()
for {
tok, lit := p.consume(Values)
switch tok {
case IdentifierToken:
s.Insert(lit)
tok2, lit2 := p.lookahead(Values)
switch tok2 {
case CommaToken:
continue
case ClosedParToken:
return s, nil
default:
return nil, fmt.Errorf("found '%s', expected: ',' or ')'", lit2)
}
case CommaToken: // handled here since we can have "(,"
if s.Len() == 0 {
s.Insert("") // to handle (,
}
tok2, _ := p.lookahead(Values)
if tok2 == ClosedParToken {
s.Insert("") // to handle ,) Double "" removed by StringSet
return s, nil
}
if tok2 == CommaToken {
p.consume(Values)
s.Insert("") // to handle ,, Double "" removed by StringSet
}
default: // it can be operator
return s, fmt.Errorf("found '%s', expected: ',', or identifier", lit)
}
}
}
// parseExactValue parses the only value for exact match style
func (p *Parser) parseExactValue() (sets.String, error) {
s := sets.NewString()
tok, lit := p.consume(Values)
if tok == IdentifierToken {
s.Insert(lit)
return s, nil
}
return nil, fmt.Errorf("found '%s', expected: identifier", lit)
}
// Parse takes a string representing a selector and returns a selector
// object, or an error. This parsing function differs from ParseSelector
// as they parse different selectors with different syntaxes.
// The input will cause an error if it does not follow this form:
//
// <selector-syntax> ::= <requirement> | <requirement> "," <selector-syntax> ]
// <requirement> ::= KEY [ <set-based-restriction> | <exact-match-restriction>
// <set-based-restriction> ::= "" | <inclusion-exclusion> <value-set>
// <inclusion-exclusion> ::= <inclusion> | <exclusion>
// <exclusion> ::= "notin"
// <inclusion> ::= "in"
// <value-set> ::= "(" <values> ")"
// <values> ::= VALUE | VALUE "," <values>
// <exact-match-restriction> ::= ["="|"=="|"!="] VALUE
// KEY is a sequence of one or more characters following [ DNS_SUBDOMAIN "/" ] DNS_LABEL
// VALUE is a sequence of zero or more characters "([A-Za-z0-9_-\.])". Max length is 64 character.
// Delimiter is white space: (' ', '\t')
// Example of valid syntax:
// "x in (foo,,baz),y,z notin ()"
//
// Note:
// (1) Inclusion - " in " - denotes that the KEY is equal to any of the
// VALUEs in its requirement
// (2) Exclusion - " notin " - denotes that the KEY is not equal to any
// of the VALUEs in its requirement
// (3) The empty string is a valid VALUE
// (4) A requirement with just a KEY - as in "y" above - denotes that
// the KEY exists and can be any VALUE.
//
func Parse(selector string) (Selector, error) {
p := &Parser{l: &Lexer{s: selector, pos: 0}}
items, error := p.parse()
if error == nil {
sort.Sort(ByKey(items)) // sort to grant determistic parsing
return LabelSelector(items), error
}
return nil, error
}
const qualifiedNameErrorMsg string = "must match regex [" + validation.DNS1123SubdomainFmt + " / ] " + validation.DNS1123LabelFmt
func validateLabelKey(k string) error {
if !validation.IsQualifiedName(k) {
return fielderrors.NewFieldInvalid("label key", k, qualifiedNameErrorMsg)
}
return nil
}
func validateLabelValue(v string) error {
if !validation.IsValidLabelValue(v) {
return fielderrors.NewFieldInvalid("label value", v, qualifiedNameErrorMsg)
}
return nil
}
// SelectorFromSet returns a Selector which will match exactly the given Set. A
// nil and empty Sets are considered equivalent to Everything().
func SelectorFromSet(ls Set) Selector {
if ls == nil {
return LabelSelector{}
}
var requirements []Requirement
for label, value := range ls {
if r, err := NewRequirement(label, EqualsOperator, sets.NewString(value)); err != nil {
//TODO: double check errors when input comes from serialization?
return LabelSelector{}
} else {
requirements = append(requirements, *r)
}
}
return LabelSelector(requirements)
}