forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
undirected.go
242 lines (202 loc) · 5.84 KB
/
undirected.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"fmt"
"golang.org/x/tools/container/intsets"
"k8s.io/kubernetes/third_party/forked/gonum/graph"
)
// UndirectedGraph implements a generalized undirected graph.
type UndirectedGraph struct {
nodes map[int]graph.Node
edges map[int]edgeHolder
self, absent float64
freeIDs intsets.Sparse
usedIDs intsets.Sparse
}
// NewUndirectedGraph returns an UndirectedGraph with the specified self and absent
// edge weight values.
func NewUndirectedGraph(self, absent float64) *UndirectedGraph {
return &UndirectedGraph{
nodes: make(map[int]graph.Node),
edges: make(map[int]edgeHolder),
self: self,
absent: absent,
}
}
// NewNodeID returns a new unique ID for a node to be added to g. The returned ID does
// not become a valid ID in g until it is added to g.
func (g *UndirectedGraph) NewNodeID() int {
if len(g.nodes) == 0 {
return 0
}
if len(g.nodes) == maxInt {
panic(fmt.Sprintf("simple: cannot allocate node: no slot"))
}
var id int
if g.freeIDs.Len() != 0 && g.freeIDs.TakeMin(&id) {
return id
}
if id = g.usedIDs.Max(); id < maxInt {
return id + 1
}
for id = 0; id < maxInt; id++ {
if !g.usedIDs.Has(id) {
return id
}
}
panic("unreachable")
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *UndirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.edges[n.ID()] = &sliceEdgeHolder{self: n.ID()}
g.freeIDs.Remove(n.ID())
g.usedIDs.Insert(n.ID())
}
// RemoveNode removes n from the graph, as well as any edges attached to it. If the node
// is not in the graph it is a no-op.
func (g *UndirectedGraph) RemoveNode(n graph.Node) {
if _, ok := g.nodes[n.ID()]; !ok {
return
}
delete(g.nodes, n.ID())
g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) {
g.edges[neighbor] = g.edges[neighbor].Delete(n.ID())
})
delete(g.edges, n.ID())
g.freeIDs.Insert(n.ID())
g.usedIDs.Remove(n.ID())
}
// SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added.
// It will panic if the IDs of the e.From and e.To are equal.
func (g *UndirectedGraph) SetEdge(e graph.Edge) {
var (
from = e.From()
fid = from.ID()
to = e.To()
tid = to.ID()
)
if fid == tid {
panic("simple: adding self edge")
}
if !g.Has(from) {
g.AddNode(from)
}
if !g.Has(to) {
g.AddNode(to)
}
g.edges[fid] = g.edges[fid].Set(tid, e)
g.edges[tid] = g.edges[tid].Set(fid, e)
}
// RemoveEdge removes e from the graph, leaving the terminal nodes. If the edge does not exist
// it is a no-op.
func (g *UndirectedGraph) RemoveEdge(e graph.Edge) {
from, to := e.From(), e.To()
if _, ok := g.nodes[from.ID()]; !ok {
return
}
if _, ok := g.nodes[to.ID()]; !ok {
return
}
g.edges[from.ID()] = g.edges[from.ID()].Delete(to.ID())
g.edges[to.ID()] = g.edges[to.ID()].Delete(from.ID())
}
// Node returns the node in the graph with the given ID.
func (g *UndirectedGraph) Node(id int) graph.Node {
return g.nodes[id]
}
// Has returns whether the node exists within the graph.
func (g *UndirectedGraph) Has(n graph.Node) bool {
_, ok := g.nodes[n.ID()]
return ok
}
// Nodes returns all the nodes in the graph.
func (g *UndirectedGraph) Nodes() []graph.Node {
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return nodes
}
// Edges returns all the edges in the graph.
func (g *UndirectedGraph) Edges() []graph.Edge {
var edges []graph.Edge
seen := make(map[[2]int]struct{})
for _, u := range g.edges {
u.Visit(func(neighbor int, e graph.Edge) {
uid := e.From().ID()
vid := e.To().ID()
if _, ok := seen[[2]int{uid, vid}]; ok {
return
}
seen[[2]int{uid, vid}] = struct{}{}
seen[[2]int{vid, uid}] = struct{}{}
edges = append(edges, e)
})
}
return edges
}
// From returns all nodes in g that can be reached directly from n.
func (g *UndirectedGraph) From(n graph.Node) []graph.Node {
if !g.Has(n) {
return nil
}
nodes := make([]graph.Node, g.edges[n.ID()].Len())
i := 0
g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) {
nodes[i] = g.nodes[neighbor]
i++
})
return nodes
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g *UndirectedGraph) HasEdgeBetween(x, y graph.Node) bool {
_, ok := g.edges[x.ID()].Get(y.ID())
return ok
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *UndirectedGraph) Edge(u, v graph.Node) graph.Edge {
return g.EdgeBetween(u, v)
}
// EdgeBetween returns the edge between nodes x and y.
func (g *UndirectedGraph) EdgeBetween(x, y graph.Node) graph.Edge {
// We don't need to check if neigh exists because
// it's implicit in the edges access.
if !g.Has(x) {
return nil
}
edge, _ := g.edges[x.ID()].Get(y.ID())
return edge
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node or there is no joining edge between the two nodes the weight
// value returned is either the graph's absent or self value. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g *UndirectedGraph) Weight(x, y graph.Node) (w float64, ok bool) {
xid := x.ID()
yid := y.ID()
if xid == yid {
return g.self, true
}
if n, ok := g.edges[xid]; ok {
if e, ok := n.Get(yid); ok {
return e.Weight(), true
}
}
return g.absent, false
}
// Degree returns the degree of n in g.
func (g *UndirectedGraph) Degree(n graph.Node) int {
if _, ok := g.nodes[n.ID()]; !ok {
return 0
}
return g.edges[n.ID()].Len()
}