-
Notifications
You must be signed in to change notification settings - Fork 0
/
chat.py
121 lines (103 loc) · 4.22 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import pickle
import numpy as np
import requests
from bs4 import BeautifulSoup
from tensorflow import keras
from tensorflow.keras.models import load_model
import json
import random
from settings import app, db, engine, drugname
connection = engine.connect()
metadata = db.MetaData()
model = load_model('chatbot_model.h5')
intents = json.loads(open('intents.json', encoding='utf-8').read())
words = pickle.load(open('words.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
drug = db.Table('drug_data3436', metadata, autoload=True, autoload_with=engine)
drugdata = connection.execute(db.select(drug.columns.drugName))
drugname = drugdata.all()
drugname = [str(x[0]).lower() for x in drugname]
with open('td1.txt', 'w') as f:
f.write(str(drugname))
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print("found in bag: %s" % w)
return (np.array(bag))
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
# print(return_list)
return return_list
def getResponse(ints, intents_json, sentence):
try:
q1 = sentence.split()
string = list(set(drugname).intersection(q1))
if string:
string = string[0]
# http = urllib3.PoolManager()
URL = "https://www.nhs.uk/medicines/" + string
response = requests.get(URL)
# response = http.request('GET', url)
# soup = BeautifulSoup(response.data, 'html.parser')
text = response.text
soup = BeautifulSoup(text, 'html.parser')
# results = soup.find(id="dosage")
side_effects_lst = ["side-effects", "side", "effects", "effect"]
info_list = ["dose", "dosage", "quantity", "qty", "when"]
what_list = ["what", "about"]
if any(item in side_effects_lst for item in q1):
results = soup.find(id="side-effects")
elif any(item in info_list for item in q1):
results = soup.find(id='how-and-when-to-take-'+ string)
elif any(item in what_list for item in q1):
results = soup.find(id="about-" + string)
result = [results('p')[0].text, URL]
return result
else:
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if (i['tag'] == tag):
result = random.choice(i['responses'])
break
else:
result = "You must ask the right questions"
return result
# results = soup.find(id ="key-facts")
# tags = soup('p')
# for tag in tags :
# results = soup.find(id="dosage").contents[0]
# results = soup.find(id ="about-"+med)
# result1 = tag.contents[0]
except:
result = 'The question is out of my knowledge'
return result
def chatbot_response(msg):
ints = predict_class(msg, model)
res = getResponse(ints, intents, msg)
return res