forked from npshub/mantid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sans_reduction_steps.py
903 lines (763 loc) · 35.3 KB
/
sans_reduction_steps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
# Mantid Repository : https://github.com/mantidproject/mantid
#
# Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
# NScD Oak Ridge National Laboratory, European Spallation Source,
# Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS
# SPDX - License - Identifier: GPL - 3.0 +
# pylint: disable=invalid-name, arguments-differ, unused-variable
"""
Implementation of reduction steps for SANS
"""
import math
import pickle
from reduction import ReductionStep
from reduction import validate_step
# Mantid imports
import mantid
from mantid.simpleapi import *
# Define a SANS specific logger
from mantid.kernel import Logger
import mantid.simpleapi as api
from mantid.api import AnalysisDataService
sanslog = Logger("SANS")
class BaseBeamFinder(ReductionStep):
"""
Base beam finder. Holds the position of the beam center
and the algorithm for calculates it using the beam's
displacement under gravity
"""
def __init__(self, beam_center_x=None, beam_center_y=None):
"""
Initial beam center is given in pixel coordinates
@param beam_center_x: pixel position of the beam in x
@param beam_center_y: pixel position of the beam in y
"""
super(BaseBeamFinder, self).__init__()
self._beam_center_x = beam_center_x
self._beam_center_y = beam_center_y
self._beam_radius = None
self._datafile = None
self._persistent = True
def set_persistent(self, persistent):
self._persistent = persistent
return self
def get_beam_center(self):
"""
Returns the beam center
"""
return [self._beam_center_x, self._beam_center_y]
def execute(self, _reducer, _workspace=None):
return "Beam Center set at: %s %s" % (str(self._beam_center_x), str(self._beam_center_y))
def _find_beam(self, direct_beam, reducer, _workspace=None):
if self._beam_center_x is not None and self._beam_center_y is not None:
return "Using Beam Center at: %g %g" % (self._beam_center_x, self._beam_center_y)
beam_x, beam_y, msg = SANSBeamFinder(Filename=self._datafile,
UseDirectBeamMethod=direct_beam,
BeamRadius=self._beam_radius,
PersistentCorrection=self._persistent,
ReductionProperties=reducer.get_reduction_table_name())
self._beam_center_x = beam_x
self._beam_center_y = beam_y
return msg
class BaseTransmission(ReductionStep):
"""
Base transmission. Holds the transmission value
as well as the algorithm for calculating it.
TODO: ISIS doesn't use ApplyTransmissionCorrection, perhaps it's in Q1D, can we remove it from here?
"""
def __init__(self, trans=0.0, error=0.0, theta_dependent=True):
super(BaseTransmission, self).__init__()
self._trans = float(trans)
self._error = float(error)
self._theta_dependent = theta_dependent
self._dark_current_data = None
self._dark_current_subtracter = None
self._beam_finder = None
def set_theta_dependence(self, theta_dependence=True):
"""
Set the flag for whether or not we want the full theta-dependence
included in the correction. Setting this flag to false will result
in simply dividing by the zero-angle transmission.
@param theta_dependence: theta-dependence included if True
"""
self._theta_dependent = theta_dependence
def set_dark_current(self, dark_current=None):
"""
Set the dark current data file to be subtracted from each transmission data file
@param dark_current: path to dark current data file
"""
self._dark_current_data = dark_current
@validate_step
def set_dark_current_subtracter(self, subtracter):
self._dark_current_subtracter = subtracter
def get_transmission(self):
return [self._trans, self._error]
@validate_step
def set_beam_finder(self, beam_finder):
self._beam_finder = beam_finder
def execute(self, reducer, workspace):
if self._theta_dependent:
ApplyTransmissionCorrection(InputWorkspace=workspace,
TransmissionValue=self._trans,
TransmissionError=self._error,
OutputWorkspace=workspace)
else:
CreateSingleValuedWorkspace(OutputWorkspace="transmission", DataValue=self._trans, ErrorValue=self._error)
Divide(LHSWorkspace=workspace, RHSWorkspace="transmission", OutputWorkspace=workspace)
return "Transmission correction applied for T = %g +- %g" % (self._trans, self._error)
class Normalize(ReductionStep):
"""
Normalize the data to timer or a spectrum, typically a monitor,
with in the workspace. By default the normalization is done with
respect to the Instrument's incident monitor
"""
def __init__(self, normalization_spectrum=None):
super(Normalize, self).__init__()
self._normalization_spectrum = normalization_spectrum
def get_normalization_spectrum(self):
return self._normalization_spectrum
def execute(self, reducer, workspace):
if self._normalization_spectrum is None:
self._normalization_spectrum = reducer.instrument.get_incident_mon()
# Get counting time or monitor
if self._normalization_spectrum == reducer.instrument.NORMALIZATION_MONITOR:
norm_count = mtd[workspace].getRun().getProperty("monitor").value
# HFIR-specific: If we count for monitor we need to multiply by 1e8
Scale(InputWorkspace=workspace, OutputWorkspace=workspace,
Factor=1.0e8 / norm_count, Operation='Multiply')
return "Normalization by monitor: %6.2g counts" % norm_count
elif self._normalization_spectrum == reducer.instrument.NORMALIZATION_TIME:
norm_count = mtd[workspace].getRun().getProperty("timer").value
Scale(InputWorkspace=workspace, OutputWorkspace=workspace,
Factor=1.0 / norm_count, Operation='Multiply')
return "Normalization by time: %6.2g sec" % norm_count
else:
logger.notice("Normalization step did not get a valid normalization option: skipping")
return "Normalization step did not get a valid normalization option: skipping"
def clean(self):
DeleteWorkspace(Workspace=norm_ws)
class Mask(ReductionStep):
# pylint: disable = too-many-instance-attributes, redefined-builtin
"""
Marks some spectra so that they are not included in the analysis
ORNL & ISIS
"""
def __init__(self):
"""
Initialize masking
"""
super(Mask, self).__init__()
self._nx_low = 0
self._nx_high = 0
self._ny_low = 0
self._ny_high = 0
self._xml = []
# these spectra will be masked by the algorithm MaskDetectors
self.detect_list = []
# List of pixels to mask
self.masked_pixels = []
# Only apply mask defined in the class and ignore additional
# information from the run properties
self._ignore_run_properties = False
def mask_edges(self, nx_low=0, nx_high=0, ny_low=0, ny_high=0):
"""
Define a "picture frame" outside of which the spectra from all detectors are to be masked.
@param nx_low: number of pixels to mask on the lower-x side of the detector
@param nx_high: number of pixels to mask on the higher-x side of the detector
@param ny_low: number of pixels to mask on the lower-y side of the detector
@param ny_high: number of pixels to mask on the higher-y side of the detector
"""
self._nx_low = nx_low
self._nx_high = nx_high
self._ny_low = ny_low
self._ny_high = ny_high
def add_xml_shape(self, complete_xml_element):
"""
Add an arbitrary shape to region to be masked
@param complete_xml_element: description of the shape to add
"""
if not complete_xml_element.startswith('<'):
raise ValueError('Excepted xml string but found: ' + str(complete_xml_element))
self._xml.append(complete_xml_element)
def _infinite_plane(self, id, plane_pt, normal_pt, complement=False):
"""
Generates xml code for an infinite plane
@param id: a string to refer to the shape by
@param plane_pt: a point in the plane
@param normal_pt: the direction of a normal to the plane
@param complement: mask in the direction of the normal or away
@return the xml string
"""
return '<infinite-plane id="' + str(id) + '">' + \
'<point-in-plane x="' + str(plane_pt[0]) + '" y="' + str(plane_pt[1]) + '" z="' + str(plane_pt[2]) + \
'" />' + '<normal-to-plane x="' + str(normal_pt[0]) + '" y="' + str(normal_pt[1]) + '" z="' + \
str(normal_pt[2]) + '" />' + '</infinite-plane>\n'
def _infinite_cylinder(self, centre, radius, axis, id='shape'):
"""
Generates xml code for an infintely long cylinder
@param centre: a tuple for a point on the axis
@param radius: cylinder radius
@param axis: cylinder orientation
@param id: a string to refer to the shape by
@return the xml string
"""
return '<infinite-cylinder id="' + str(id) + '">' + \
'<centre x="' + str(centre[0]) + '" y="' + str(centre[1]) + '" z="' + str(centre[2]) + '" />' + \
'<axis x="' + str(axis[0]) + '" y="' + str(axis[1]) + '" z="' + str(axis[2]) + '" />' + \
'<radius val="' + str(radius) + '" /></infinite-cylinder>\n'
def _finite_cylinder(self, centre, radius, height, axis, id='shape'):
"""
Generates xml code for an infintely long cylinder
@param centre: a tuple for a point on the axis
@param radius: cylinder radius
@param height: cylinder height
@param axis: cylinder orientation
@param id: a string to refer to the shape by
@return the xml string
"""
return '<cylinder id="' + str(id) + '">' + \
'<centre-of-bottom-base x="' + str(centre[0]) + '" y="' + str(centre[1]) + '" z="' + \
str(centre[2]) + '" />' + \
'<axis x="' + str(axis[0]) + '" y="' + str(axis[1]) + '" z="' + str(axis[2]) + '" />' + \
'<radius val="' + str(radius) + '" /><height val="' + str(height) + '" /></cylinder>\n'
def add_cylinder(self, radius, xcentre, ycentre, ID='shape'):
'''Mask the inside of an infinite cylinder on the input workspace.'''
self.add_xml_shape(
self._infinite_cylinder([xcentre, ycentre, 0.0], radius, [0, 0, 1], id=ID) + '<algebra val="' + str(
ID) + '"/>')
def add_outside_cylinder(self, radius, xcentre=0.0, ycentre=0.0, ID='shape'):
'''Mask out the outside of a cylinder or specified radius'''
self.add_xml_shape(
self._infinite_cylinder([xcentre, ycentre, 0.0], radius, [0, 0, 1], id=ID) + '<algebra val="#' + str(
ID) + '"/>')
def add_pixel_rectangle(self, x_min, x_max, y_min, y_max):
"""
Mask out a rectangle area defined in pixel coordinates.
@param x_min: Minimum x to mask
@param x_max: Maximum x to mask
@param y_min: Minimum y to mask
@param y_max: Maximum y to mask
"""
for ix in range(x_min, x_max + 1):
for iy in range(y_min, y_max + 1):
self.masked_pixels.append([ix, iy])
def add_detector_list(self, det_list):
"""
Mask the given detectors
@param det_list: list of detector IDs
"""
self.detect_list.extend(det_list)
def ignore_run_properties(self, ignore=True):
"""
Only use the mask information set in the current object
and ignore additional information that may have been
stored in the workspace properties.
"""
self._ignore_run_properties = ignore
def execute(self, reducer, workspace):
# Check whether the workspace has mask information
run = mtd[workspace].run()
if not self._ignore_run_properties and run.hasProperty("rectangular_masks"):
mask_str = run.getProperty("rectangular_masks").value
try:
rectangular_masks = pickle.loads(mask_str)
except (Exception, Warning):
rectangular_masks = []
toks = mask_str.split(',')
for item in toks:
if len(item) > 0:
c = item.strip().split(' ')
if len(c) == 4:
rectangular_masks.append([int(c[0]), int(c[2]), int(c[1]), int(c[3])])
for rec in rectangular_masks:
try:
self.add_pixel_rectangle(rec[0], rec[1], rec[2], rec[3])
except (Exception, Warning):
mantid.logger.notice("Badly defined mask from configuration file: %s" % str(rec))
for shape in self._xml:
api.MaskDetectorsInShape(Workspace=workspace, ShapeXML=shape)
instrument = reducer.instrument
# Get a list of detector pixels to mask
if self._nx_low != 0 or self._nx_high != 0 or self._ny_low != 0 or self._ny_high != 0:
self.masked_pixels.extend(instrument.get_masked_pixels(self._nx_low,
self._nx_high,
self._ny_low,
self._ny_high,
workspace))
if len(self.detect_list) > 0:
MaskDetectors(Workspace=workspace, DetectorList=self.detect_list)
# Mask out internal list of pixels
if len(self.masked_pixels) > 0:
# Transform the list of pixels into a list of Mantid detector IDs
masked_detectors = instrument.get_detector_from_pixel(self.masked_pixels, workspace)
# Mask the pixels by passing the list of IDs
MaskDetectors(Workspace=workspace, DetectorList=masked_detectors)
output_ws, detector_list = ExtractMask(InputWorkspace=workspace, OutputWorkspace="__mask")
mantid.logger.notice("Mask check %s: %g masked pixels" % (workspace, len(detector_list)))
return "Mask applied %s: %g masked pixels" % (workspace, len(detector_list))
class CorrectToFileStep(ReductionStep):
"""
Runs the algorithm CorrectToFile()
ISIS only
"""
def __init__(self, file='', corr_type='', operation=''):
"""
Parameters passed to this function are passed to
the CorrectToFile() algorithm
@param file: full path of the correction file
@param corr_type: "deltaE", "TOF", "SpectrumNumber" or any valid setting for CorrectToFile()'s as FirstColumnValue property
@param operation: set to "Divide" or "Multiply"
"""
super(CorrectToFileStep, self).__init__()
self._filename = file
self._corr_type = corr_type
self._operation = operation
def get_filename(self):
return self._filename
def set_filename(self, filename):
self._filename = filename
def execute(self, reducer, workspace):
if self._filename:
CorrectToFile(WorkspaceToCorrect=workspace, Filename=self._filename, OutputWorkspace=workspace,
FirstColumnValue=self._corr_type, WorkspaceOperation=self._operation)
class CalculateNorm(object):
"""
Generates the normalization workspaces required by Q1D or Qxy from output
of other, sometimes optional, reduction_steps or specified workspaces.
Workspaces for wavelength adjustment must have their
distribution/non-distribution flag set correctly as they maybe converted
ISIS only
ORNL doesn't use that approach
"""
TMP_WORKSPACE_NAME = '__CalculateNorm_loaded_temp'
WAVE_CORR_NAME = '__Q_WAVE_conversion_temp'
PIXEL_CORR_NAME = '__Q_pixel_conversion_temp'
def __init__(self, wavelength_deps=[]):
super(CalculateNorm, self).__init__()
self._wave_steps = wavelength_deps
self._wave_adjs = []
# if this attribute is set a pixel correction file is read
self._pixel_file = ''
# algorithm to be used to load pixel correction files
self._load = 'Load'
# a parameters string to add as the last argument to the above algorithm
self._load_params = ''
def setPixelCorrFile(self, filename):
"""
Adds a scaling that is a function of the detector (spectrum index)
from a file
"""
self._pixel_file = filename
def getPixelCorrFile(self):
"""
@return the file that has been set to load as the pixelAdj workspace or '' if none has been set
"""
return self._pixel_file
def _is_point_data(self, wksp):
"""
Tests if the workspace whose name is passed contains point or histogram data
The test is if the X and Y array lengths are the same = True, different = false
@param wksp: name of the workspace to test
@return True for point data, false for histogram
"""
handle = mtd[wksp]
if len(handle.readX(0)) == len(handle.readY(0)):
return True
else:
return False
def calculate(self, reducer, wave_wksps=[]):
"""
Multiplies all the wavelength scalings into one workspace and all the detector
dependent scalings into another workspace that can be used by ConvertToQ. It is important
that the wavelength correction workspaces have a know distribution/non-distribution state
@param reducer: settings used for this reduction
@param wave_wksps: additional wavelength dependent correction workspaces to include
"""
for step in self._wave_steps:
if step.output_wksp:
wave_wksps.append(step.output_wksp)
wave_adj = None
for wksp in wave_wksps:
# before the workspaces can be combined they all need to match
api.RebinToWorkspace(WorkspaceToRebin=wksp, WorkspaceToMatch=reducer.output_wksp,
OutputWorkspace=self.TMP_WORKSPACE_NAME)
if not wave_adj:
# first time around this loop
wave_adj = self.WAVE_CORR_NAME
api.RenameWorkspace(InputWorkspace=self.TMP_WORKSPACE_NAME, OutputWorkspace=wave_adj)
else:
api.Multiply(LHSWorkspace=self.TMP_WORKSPACE_NAME, RHSWorkspace=wave_adj, OutputWorkspace=wave_adj)
# read pixel correction file
# note the python code below is an attempt to emulate function overloading
# If a derived class overwrite self._load and self._load_params then
# a custom specific loading can be achieved
pixel_adj = ''
if self._pixel_file:
pixel_adj = self.PIXEL_CORR_NAME
load_com = self._load + '(Filename="' + self._pixel_file + '",OutputWorkspace="' + pixel_adj + '"'
if self._load_params:
load_com += ',' + self._load_params
load_com += ')'
eval(load_com)
if AnalysisDataService.doesExist(self.TMP_WORKSPACE_NAME):
AnalysisDataService.remove(self.TMP_WORKSPACE_NAME)
return wave_adj, pixel_adj
# pylint: disable = too-many-instance-attributes
class ConvertToQ(ReductionStep):
"""
Runs the Q1D or Qxy algorithms to convert wavelength data into momentum transfer, Q
ISIS only
ORNL uses WeightedAzimuthalAverage
"""
# the list of possible Q conversion algorithms to use
_OUTPUT_TYPES = {'1D': 'Q1D',
'2D': 'Qxy'}
# defines if Q1D should correct for gravity by default
_DEFAULT_GRAV = False
def __init__(self, normalizations):
"""
@param normalizations: CalculateNormISIS object contains the workspace, ReductionSteps or
files require for the optional normalization arguments
"""
super(ConvertToQ, self).__init__()
if not issubclass(normalizations.__class__, CalculateNorm):
raise RuntimeError('Error initializing ConvertToQ, invalid normalization object')
# contains the normalization optional workspaces to pass to the Q algorithm
self._norms = normalizations
# this should be set to 1D or 2D
self._output_type = '1D'
# the algorithm that corresponds to the above choice
self._Q_alg = self._OUTPUT_TYPES[self._output_type]
# if true gravity is taken into account in the Q1D calculation
self._use_gravity = self._DEFAULT_GRAV
# used to implement a default setting for gravity that can be over written but doesn't over write
self._grav_set = False
# this should contain the rebin parameters
self.binning = None
# if set to true the normalization is done out side of the convert to Q algorithm
self.prenorm = False
# The minimum distance in metres from the beam center at which all wavelengths are used in the calculation
self.r_cut = 0.0
# The shortest wavelength in angstrom at which counts should be summed from all detector pixels in Angstrom
self.w_cut = 0.0
# Whether to output parts when running either Q1D2 or Qxy
self.outputParts = False
def set_output_type(self, descript):
"""
Requests the given output from the Q conversion, either 1D or 2D. For
the 1D calculation it asks the reducer to keep a workspace for error
estimates
@param descript: 1D or 2D
"""
self._Q_alg = self._OUTPUT_TYPES[descript]
self._output_type = descript
def get_output_type(self):
return self._output_type
output_type = property(get_output_type, set_output_type, None, None)
def get_gravity(self):
return self._use_gravity
def set_gravity(self, flag, override=True):
"""
Enable or disable including gravity when calculating Q
@param flag: set to True to enable the gravity correction
@param override: over write the setting from a previous call to this method (default is True)
"""
if override:
self._grav_set = True
if (not self._grav_set) or override:
self._use_gravity = bool(flag)
else:
msg = "User file can't override previous gravity setting, do gravity correction remains " \
+ str(self._use_gravity)
print(msg)
sanslog.warning(msg)
def execute(self, reducer, workspace):
"""
Calculate the normalization workspaces and then call the chosen Q conversion algorithm
"""
# create normalization workspaces
if self._norms:
# the empty list at the end appears to be needed (the system test SANS2DWaveloops) is this a bug in Python?
wave_adj, pixel_adj = self._norms.calculate(reducer, [])
else:
raise RuntimeError('Normalization workspaces must be created by CalculateNorm() and passed to this step')
# If some prenormalization flag is set - normalize data with wave_adj and pixel_adj
if self.prenorm:
data = mtd[workspace]
if wave_adj:
data /= mtd[wave_adj]
if pixel_adj:
data /= mtd[pixel_adj]
self._deleteWorkspaces([wave_adj, pixel_adj])
wave_adj, pixel_adj = '', ''
try:
if self._Q_alg == 'Q1D':
Q1D(DetBankWorkspace=workspace, OutputWorkspace=workspace, OutputBinning=self.binning,
WavelengthAdj=wave_adj, PixelAdj=pixel_adj, AccountForGravity=self._use_gravity,
RadiusCut=self.r_cut * 1000.0, WaveCut=self.w_cut, OutputParts=self.outputParts)
elif self._Q_alg == 'Qxy':
Qxy(InputWorkspace=workspace, OutputWorkspace=workspace, MaxQxy=reducer.QXY2, DeltaQ=reducer.DQXY,
WavelengthAdj=wave_adj, PixelAdj=pixel_adj, AccountForGravity=self._use_gravity,
RadiusCut=self.r_cut * 1000.0, WaveCut=self.w_cut, OutputParts=self.outputParts)
ReplaceSpecialValues(InputWorkspace=workspace, OutputWorkspace=workspace, NaNValue="0",
InfinityValue="0")
else:
raise NotImplementedError('The type of Q reduction has not been set, e.g. 1D or 2D')
except:
# when we are all up to Python 2.5 replace the duplicated code below with one finally:
self._deleteWorkspaces([wave_adj, pixel_adj])
raise
self._deleteWorkspaces([wave_adj, pixel_adj])
def _deleteWorkspaces(self, workspaces):
"""
Deletes a list of workspaces if they exist but ignores any errors
@param workspaces: list of workspaces to try to delete
"""
for wk in workspaces:
try:
if AnalysisDataService.doesExist(wk):
AnalysisDataService.remove(wk)
except (Exception, Warning):
# if the workspace can't be deleted this function does nothing
pass
class GetSampleGeom(ReductionStep):
"""
Loads, stores, retrieves, etc. data about the geometry of the sample
On initialisation this class will return default geometry values (compatible with the Colette software)
There are functions to override these settings
On execute if there is geometry information in the workspace this will override any unset attributes
ISIS only
ORNL only divides by thickness, in the absolute scaling step
"""
# IDs for each shape as used by the Colette software
_shape_ids = {1: 'cylinder-axis-up',
2: 'cuboid',
3: 'cylinder-axis-along'}
_default_shape = 'cylinder-axis-along'
def __init__(self):
super(GetSampleGeom, self).__init__()
# string specifies the sample's shape
self._shape = None
# sample's width
self._width = None
self._thickness = None
self._height = None
self._use_wksp_shape = True
self._use_wksp_width = True
self._use_wksp_thickness = True
self._use_wksp_height = True
def _get_default(self, attrib):
if attrib == 'shape':
return self._default_shape
elif attrib == 'width' or attrib == 'thickness' or attrib == 'height':
return 1.0
def set_shape(self, new_shape):
"""
Sets the sample's shape from a string or an ID. If the ID is not
in the list of allowed values the shape is set to the default but
shape strings not in the list are not checked
"""
try:
# deal with ID numbers as arguments
new_shape = self._shape_ids[int(new_shape)]
except ValueError:
# means that we weren't passed an ID number, the code below treats it as a shape name
pass
except KeyError:
sanslog.warning("Warning: Invalid geometry type for sample: " + str(
new_shape) + ". Setting default to " + self._default_shape)
new_shape = self._default_shape
self._shape = new_shape
self._use_wksp_shape = False
# check that the dimensions that we have make sense for our new shape
if self._width:
self.width = self._width
if self._thickness:
self.thickness = self._thickness
def get_shape(self):
if self._shape is None:
return self._get_default('shape')
else:
return self._shape
def set_width(self, width):
self._width = float(width)
self._use_wksp_width = False
# For a disk the height=width
if self._shape and self._shape.startswith('cylinder'):
self._height = self._width
self._use_wksp_height = False
def get_width(self):
if self._width is None:
return self._get_default('width')
else:
return self._width
def set_height(self, height):
self._height = float(height)
self._use_wksp_height = False
# For a cylinder and sphere the height=width=radius
if (self._shape is not None) and (self._shape.startswith('cylinder')):
self._width = self._height
self._use_wksp_widtht = False
def get_height(self):
if self._height is None:
return self._get_default('height')
else:
return self._height
def set_thickness(self, thickness):
"""
Simply sets the variable _thickness to the value passed
"""
# as only cuboids use the thickness the warning below may be informative
# if (not self._shape is None) and (not self._shape == 'cuboid'):
# mantid.sendLogMessage('::SANS::Warning: Can\'t set thickness for shape "'+self._shape+'"')
self._thickness = float(thickness)
self._use_wksp_thickness = False
def get_thickness(self):
if self._thickness is None:
return self._get_default('thickness')
else:
return self._thickness
shape = property(get_shape, set_shape, None, None)
width = property(get_width, set_width, None, None)
height = property(get_height, set_height, None, None)
thickness = property(get_thickness, set_thickness, None, None)
def execute(self, reducer, workspace):
"""
Reads the geometry information stored in the workspace
but doesn't replace values that have been previously set
"""
wksp = mtd[workspace]
if isinstance(wksp, mantid.api.WorkspaceGroup):
wksp = wksp[0]
sample_details = wksp.sample()
if self._use_wksp_shape:
self.shape = sample_details.getGeometryFlag()
if self._use_wksp_thickness:
self.thickness = sample_details.getThickness()
if self._use_wksp_width:
self.width = sample_details.getWidth()
if self._use_wksp_height:
self.height = sample_details.getHeight()
def __str__(self):
return '-- Sample Geometry --\n' + \
' Shape: ' + self.shape + '\n' + \
' Width: ' + str(self.width) + '\n' + \
' Height: ' + str(self.height) + '\n' + \
' Thickness: ' + str(self.thickness) + '\n'
class SampleGeomCor(ReductionStep):
"""
Correct the neutron count rates for the size of the sample
ISIS only
ORNL only divides by thickness, in the absolute scaling step
"""
def __init__(self):
self.volume = 1.0
def calculate_volume(self, reducer):
geo = reducer.get_sample().geometry
assert issubclass(geo.__class__, GetSampleGeom)
try:
if geo.shape == 'cylinder-axis-up':
# Volume = circle area * height
# Factor of four comes from radius = width/2
volume = geo.height * math.pi
volume *= math.pow(geo.width, 2) / 4.0
elif geo.shape == 'cuboid':
# Flat plate sample
volume = geo.width
volume *= geo.height * geo.thickness
elif geo.shape == 'cylinder-axis-along':
# Factor of four comes from radius = width/2
# Disc - where height is not used
volume = geo.thickness * math.pi
volume *= math.pow(geo.width, 2) / 4.0
else:
raise NotImplementedError('Shape "' + geo.shape + '" is not in the list of supported shapes')
# pylint: disable=notimplemented-raised
except TypeError:
raise TypeError('Error calculating sample volume with width=' + str(geo.width) + ' height=' + str(
geo.height) + 'and thickness=' + str(geo.thickness))
return volume
def execute(self, reducer, workspace):
"""
Divide the counts by the volume of the sample
"""
if not reducer.is_can():
# it calculates the volume for the sample and may or not apply to the can as well.
self.volume = self.calculate_volume(reducer)
ws = mtd[str(workspace)]
ws /= self.volume
class StripEndZeros(ReductionStep):
# ISIS only
def __init__(self, flag_value=0.0):
super(StripEndZeros, self).__init__()
self._flag_value = flag_value
def execute(self, reducer, workspace):
result_ws = mtd[workspace]
if result_ws.getNumberHistograms() != 1:
# Strip zeros is only possible on 1D workspaces
return
y_vals = result_ws.readY(0)
length = len(y_vals)
# Find the first non-zero value
start = 0
for i in range(0, length):
if y_vals[i] != self._flag_value:
start = i
break
# Now find the last non-zero value
stop = 0
length -= 1
for j in range(length, 0, -1):
if y_vals[j] != self._flag_value:
stop = j
break
# Find the appropriate X values and call CropWorkspace
x_vals = result_ws.readX(0)
startX = x_vals[start]
# Make sure we're inside the bin that we want to crop
endX = 1.001 * x_vals[stop + 1]
CropWorkspace(InputWorkspace=workspace, OutputWorkspace=workspace, XMin=startX, XMax=endX)
class StripEndNans(ReductionStep):
# ISIS only
def __init__(self):
super(StripEndNans, self).__init__()
def _isNan(self, val):
"""
Can replaced by isNaN in Python 2.6
@param val: float to check
"""
if val != val:
return True
else:
return False
def execute(self, reducer, workspace):
"""
Trips leading and trailing Nan values from workspace
@param reducer: unused
@param workspace: the workspace to convert
"""
result_ws = mtd[workspace]
if result_ws.getNumberHistograms() != 1:
# Strip zeros is only possible on 1D workspaces
return
y_vals = result_ws.readY(0)
length = len(y_vals)
# Find the first non-zero value
start = 0
for i in range(0, length):
if not self._isNan(y_vals[i]):
start = i
break
# Now find the last non-zero value
stop = 0
length -= 1
for j in range(length, 0, -1):
if not self._isNan(y_vals[j]):
stop = j
break
# Find the appropriate X values and call CropWorkspace
x_vals = result_ws.readX(0)
startX = x_vals[start]
# Make sure we're inside the bin that we want to crop
endX = 1.001 * x_vals[stop + 1]
api.CropWorkspace(InputWorkspace=workspace, OutputWorkspace=workspace, XMin=startX, XMax=endX)