.. index:: EISFDiffCylinder
This fitting function models the diffusion of a particle confined in a cylinder of radius R and length L [1].
A_0(Q_z) = (\frac{j_0(Q R \cos(\theta))}{Q R \cos(\theta)})^2 B_0^0(Q_{\perp}) = (3 \frac{j_1(Q L \sin(\theta))}{Q L \sin(\theta)})^2 \frac{1}{2} \int_0^{\pi} d\theta \sin(\theta)
A_0(Q_z) implements diffusion along the cylinder axis. B_0^0(Q_{\perp}) implements diffusion perpendicular to the cylinder axis. Both diffusions are assumed to be decoupled. Finally, the integration in \theta implements a powder average (spherical Bessel functions).
R and L units are inverse of Q units.
[1] |
|
Example - fit of Q-dependence:
.. testcode:: QdependenceFit q = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9] # A=1.0, R=3.5, L=1.7 eisf = [0.8327688, 0.60447105, 0.36837178, 0.18538092, 0.07615478, 0.02660468, 0.00973061, 0.00461192, 0.00222067] w = CreateWorkspace(q, eisf, NSpec=1) results = Fit('name=EISFDiffCylinder,A=1,R=2.0,L=1,constraints=(0.01<R,0.01<L),ties=(A=1)', w, WorkspaceIndex=0) print(results.Function)
Output:
.. testoutput:: QdependenceFit name=EISFDiffCylinder,A=1,R=3.5,L=1.7,constraints=(0.01<R,0.01<L),ties=(A=1)
.. properties::
.. categories::
.. sourcelink::