.. index:: Voigt
A Voigt function is a convolution between a Lorentzian and Gaussian and is defined as:
V(X,Y) = \frac{Y}{\pi}\int_{-\infty}^{+\infty}dz\frac{exp^{-z^2}}{Y^2 + (X - z)^2}
where
- X - Normalized line separation width;
- Y - Normalized collision separation width.
Generally, the Voigt function involves a numerical integral and is therefore a computational intensive task. However, several approximations to the Voigt function exist making it palatable for fitting in a least-squares algorithm. The approximation used here is described in
- A.B. McLean, C.E.J. Mitchell, and D.M. Swanston. Implementation of an Efficient Analytical Approximation to the Voigt Function for Photoemission Lineshape Analysis. Journal of Electron Spectroscopy and Related Phenomena 69.2 (1994): 125–132 doi:10.1016/0368-2048(94)02189-7
The approximation uses a combination of 4 Lorentzians in two variables to generate good approximation to the true function.
.. attributes::
.. properties::
.. categories::
.. sourcelink::