forked from AmbaPant/mantid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
LiquidsReflectometryReduction.py
604 lines (528 loc) · 30.3 KB
/
LiquidsReflectometryReduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Mantid Repository : https://github.com/mantidproject/mantid
#
# Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
# NScD Oak Ridge National Laboratory, European Spallation Source,
# Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS
# SPDX - License - Identifier: GPL - 3.0 +
#pylint: disable=no-init,invalid-name
"""
This algorithm is a refactored version of the RefLReduction algorithm.
It was written in an attempt to:
- Not rely on external code but only on algorithms.
- Do work using existing algorithms as opposed to doing everything in arrays.
- Keep the same parameters and work as a drop-in replacement for the old algorithm.
- Reproduce the output of the old algorithm.
"""
import time
import math
import os
from mantid.api import *
from mantid.simpleapi import *
from mantid.kernel import *
from functools import reduce #pylint: disable=redefined-builtin
class LiquidsReflectometryReduction(PythonAlgorithm):
number_of_pixels_x=0
number_of_pixels_y=0
TOLERANCE=0.
def category(self):
return "Reflectometry\\SNS"
def name(self):
return "LiquidsReflectometryReduction"
def version(self):
return 1
def summary(self):
return "Liquids Reflectometer (REFL) reduction"
def PyInit(self):
#TODO: Revisit the choice of names when we are entirely rid of the old code.
self.declareProperty(StringArrayProperty("RunNumbers"), "List of run numbers to process")
self.declareProperty(WorkspaceProperty("InputWorkspace", "",
Direction.Input, PropertyMode.Optional),
"Optionally, we can provide a workspace directly")
self.declareProperty("NormalizationRunNumber", 0, "Run number of the normalization run to use")
self.declareProperty(IntArrayProperty("SignalPeakPixelRange", [123, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the data peak")
self.declareProperty("SubtractSignalBackground", True,
doc='If true, the background will be subtracted from the data peak')
self.declareProperty(IntArrayProperty("SignalBackgroundPixelRange", [123, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the background. Default:(123,137)")
self.declareProperty("ErrorWeighting", False,
doc='If True, a weighted average is used to to estimate the subtracted background.'
'Otherwise, a simple average is used.')
self.declareProperty("NormFlag", True, doc="If true, the data will be normalized")
self.declareProperty(IntArrayProperty("NormPeakPixelRange", [127, 133],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the normalization peak")
self.declareProperty("SubtractNormBackground", True,
doc="If true, the background will be subtracted from the normalization peak")
self.declareProperty(IntArrayProperty("NormBackgroundPixelRange", [127, 137],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the background for the normalization")
self.declareProperty("LowResDataAxisPixelRangeFlag", True,
doc="If true, the low resolution direction of the data will be cropped according "
+ "to the lowResDataAxisPixelRange property")
self.declareProperty(IntArrayProperty("LowResDataAxisPixelRange", [115, 210],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use in the low resolution direction of the data")
self.declareProperty("LowResNormAxisPixelRangeFlag", True,
doc="If true, the low resolution direction of the normalization run will be cropped "
+ "according to the LowResNormAxisPixelRange property")
self.declareProperty(IntArrayProperty("LowResNormAxisPixelRange", [115, 210],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use in the low resolution direction of the normalizaion run")
self.declareProperty(FloatArrayProperty("TOFRange", [0., 340000.],
FloatArrayLengthValidator(2), direction=Direction.Input),
"TOF range to use")
self.declareProperty("TOFRangeFlag", True,
doc="If true, the TOF will be cropped according to the TOF range property")
self.declareProperty("QMin", 0.05, doc="Minimum Q-value")
self.declareProperty("QStep", 0.02, doc="Step size in Q. Enter a negative value to get a log scale")
self.declareProperty("AngleOffset", 0.0, doc="angle offset (degrees)")
self.declareProperty("AngleOffsetError", 0.0, doc="Angle offset error (degrees)")
self.declareProperty(MatrixWorkspaceProperty("OutputWorkspace", "", Direction.Output), "Output workspace")
self.declareProperty("ApplyScalingFactor", True, doc="If true, the scaling from Scaling Factor file will be applied")
self.declareProperty("ScalingFactorFile", "", doc="Scaling factor configuration file")
self.declareProperty("SlitTolerance", 0.02, doc="Tolerance for matching slit positions")
self.declareProperty("SlitsWidthFlag", True,
doc="Looking for perfect match of slits width when using Scaling Factor file")
self.declareProperty("IncidentMediumSelected", "", doc="Incident medium used for those runs")
self.declareProperty("GeometryCorrectionFlag", False, doc="Use or not the geometry correction")
self.declareProperty("FrontSlitName", "S1", doc="Name of the front slit")
self.declareProperty("BackSlitName", "Si", doc="Name of the back slit")
self.declareProperty("TOFSteps", 40.0, doc="TOF step size")
self.declareProperty("CropFirstAndLastPoints", True, doc="If true, we crop the first and last points")
self.declareProperty("ApplyPrimaryFraction", False, doc="If true, the primary fraction correction will be applied")
self.declareProperty(IntArrayProperty("PrimaryFractionRange", [117, 197],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range to use for calculating the primary fraction correction.")
#pylint: disable=too-many-locals,too-many-branches
def PyExec(self): # noqa
# The old reduction code had a tolerance value for matching the
# slit parameters to get the scaling factors
self.TOLERANCE = self.getProperty("SlitTolerance").value
# DATA
dataPeakRange = self.getProperty("SignalPeakPixelRange").value
dataBackRange = self.getProperty("SignalBackgroundPixelRange").value
# NORM
normalizationRunNumber = self.getProperty("NormalizationRunNumber").value
normBackRange = self.getProperty("NormBackgroundPixelRange").value
normPeakRange = self.getProperty("NormPeakPixelRange").value
# Get Q range
qMin = self.getProperty("QMin").value
qStep = self.getProperty("QStep").value
if qStep > 0: #force logarithmic binning
qStep = -qStep
# Load the data
ws_event_data = self.load_data()
# Compute the primary fraction using the unprocessed workspace
apply_primary_fraction = self.getProperty("ApplyPrimaryFraction").value
primary_fraction = [1.0, 0.0]
if apply_primary_fraction:
signal_range = self.getProperty("PrimaryFractionRange").value
primary_fraction = LRPrimaryFraction(InputWorkspace=ws_event_data,
SignalRange=signal_range)
# Get the TOF range
crop_TOF = self.getProperty("TOFRangeFlag").value
tof_step = self.getProperty("TOFSteps").value
if crop_TOF:
TOFrange = self.getProperty("TOFRange").value #microS
if TOFrange[0] <= 0:
TOFrange[0] = tof_step
logger.error("Lower bound of TOF range cannot be zero: using %s" % tof_step)
else:
# If the TOF range option is turned off, use the full range
# Protect against TOF=0, which will crash when going to Q.
tof_min = ws_event_data.getTofMin()
if tof_min <= 0:
tof_min = tof_step
tof_max = ws_event_data.getTofMax()
TOFrange = [tof_min, tof_max]
logger.information("Using TOF range: %g %g" % (tof_min, tof_max))
# Number of pixels in each direction
#TODO: revisit this when we update the IDF
self.number_of_pixels_x = int(ws_event_data.getInstrument().getNumberParameter("number-of-x-pixels")[0])
self.number_of_pixels_y = int(ws_event_data.getInstrument().getNumberParameter("number-of-y-pixels")[0])
# Get scattering angle theta
theta = self.calculate_scattering_angle(ws_event_data)
two_theta_degrees = 2.0*theta*180.0/math.pi
AddSampleLog(Workspace=ws_event_data, LogName='two_theta', LogText=str(two_theta_degrees), LogType='Number')
# ----- Process Sample Data -------------------------------------------
crop_request = self.getProperty("LowResDataAxisPixelRangeFlag").value
low_res_range = self.getProperty("LowResDataAxisPixelRange").value
bck_request = self.getProperty("SubtractSignalBackground").value
data_cropped = self.process_data(ws_event_data, TOFrange,
crop_request, low_res_range,
dataPeakRange, bck_request, dataBackRange)
# ----- Normalization -------------------------------------------------
perform_normalization = self.getProperty("NormFlag").value
if perform_normalization:
# Load normalization
ws_event_norm = LoadEventNexus("REF_L_%s" % normalizationRunNumber,
OutputWorkspace="REF_L_%s" % normalizationRunNumber)
crop_request = self.getProperty("LowResNormAxisPixelRangeFlag").value
low_res_range = self.getProperty("LowResNormAxisPixelRange").value
bck_request = self.getProperty("SubtractNormBackground").value
norm_cropped = self.process_data(ws_event_norm, TOFrange,
crop_request, low_res_range,
normPeakRange, bck_request, normBackRange)
# Avoid leaving trash behind
AnalysisDataService.remove(str(ws_event_norm))
# Sum up the normalization peak
norm_summed = SumSpectra(InputWorkspace = norm_cropped)
norm_summed = RebinToWorkspace(WorkspaceToRebin=norm_summed,
WorkspaceToMatch=data_cropped,
OutputWorkspace=str(norm_summed))
# Sum up the normalization peak
norm_summed = SumSpectra(InputWorkspace = norm_cropped)
# Normalize the data
normalized_data = data_cropped / norm_summed
# Avoid leaving trash behind
AnalysisDataService.remove(str(data_cropped))
AnalysisDataService.remove(str(norm_cropped))
AnalysisDataService.remove(str(norm_summed))
AddSampleLog(Workspace=normalized_data, LogName='normalization_run', LogText=str(normalizationRunNumber))
else:
normalized_data = data_cropped
AddSampleLog(Workspace=normalized_data, LogName='normalization_run', LogText="None")
# At this point, the workspace should be considered a distribution of points
normalized_data = ConvertToPointData(InputWorkspace=normalized_data,
OutputWorkspace=str(normalized_data))
normalized_data.setDistribution(True)
# Apply scaling factors
apply_scaling_factor = self.getProperty("ApplyScalingFactor").value
if apply_scaling_factor:
normalized_data = self.apply_scaling_factor(normalized_data)
q_workspace = SumSpectra(InputWorkspace = normalized_data)
q_workspace.getAxis(0).setUnit("MomentumTransfer")
# Geometry correction to convert To Q with correction
geometry_correction_flag = self.getProperty("GeometryCorrectionFlag").value
if geometry_correction_flag:
logger.error("The geometry correction for the Q conversion has not been implemented.")
# Get the distance fromthe moderator to the detector
sample = ws_event_data.getInstrument().getSample()
source = ws_event_data.getInstrument().getSource()
source_sample_distance = sample.getDistance(source)
detector = ws_event_data.getDetector(0)
sample_detector_distance = detector.getPos().getZ()
source_detector_distance = source_sample_distance + sample_detector_distance
# Convert to Q
# Use the TOF range to pick the maximum Q, and give it a little extra room.
h = 6.626e-34 # m^2 kg s^-1
m = 1.675e-27 # kg
constant = 4e-4 * math.pi * m * source_detector_distance / h * math.sin(theta)
q_range = [qMin, qStep, constant / TOFrange[0] * 1.2]
q_min_from_data = constant / TOFrange[1]
q_max_from_data = constant / TOFrange[0]
AddSampleLog(Workspace=q_workspace, LogName='q_min', LogText=str(q_min_from_data), LogType='Number')
AddSampleLog(Workspace=q_workspace, LogName='q_max', LogText=str(q_max_from_data), LogType='Number')
tof_to_lambda = 1.0e4 * h / (m * source_detector_distance)
lambda_min = tof_to_lambda * TOFrange[0]
lambda_max = tof_to_lambda * TOFrange[1]
AddSampleLog(Workspace=q_workspace, LogName='lambda_min', LogText=str(lambda_min), LogType='Number')
AddSampleLog(Workspace=q_workspace, LogName='lambda_max', LogText=str(lambda_max), LogType='Number')
data_x = q_workspace.dataX(0)
for i in range(len(data_x)):
data_x[i] = constant / data_x[i]
q_workspace = SortXAxis(InputWorkspace=q_workspace, OutputWorkspace=str(q_workspace))
# Cook up a name compatible with the UI for backward compatibility
_time = int(time.time())
name_output_ws = self.getPropertyValue("OutputWorkspace")
name_output_ws = name_output_ws + '_#' + str(_time) + 'ts'
q_rebin = Rebin(InputWorkspace=q_workspace, Params=q_range,
OutputWorkspace=name_output_ws)
# Apply the primary fraction
if apply_primary_fraction:
ws_fraction = CreateSingleValuedWorkspace(DataValue=primary_fraction[0],
ErrorValue=primary_fraction[1])
q_rebin = Multiply(LHSWorkspace=q_rebin, RHSWorkspace=ws_fraction,
OutputWorkspace=name_output_ws)
AddSampleLog(Workspace=q_rebin, LogName='primary_fraction', LogText=str(primary_fraction[0]), LogType='Number')
AddSampleLog(Workspace=q_rebin, LogName='primary_fraction_error', LogText=str(primary_fraction[1]), LogType='Number')
# Replace NaNs by zeros
q_rebin = ReplaceSpecialValues(InputWorkspace=q_rebin,
OutputWorkspace=name_output_ws,
NaNValue=0.0, NaNError=0.0)
# Crop to non-zero values
data_y = q_rebin.readY(0)
low_q = None
high_q = None
for i in range(len(data_y)):
if low_q is None and abs(data_y[i])>0:
low_q = i
if high_q is None and abs(data_y[len(data_y)-1-i])>0:
high_q = len(data_y)-1-i
if low_q is not None and high_q is not None:
break
crop = self.getProperty("CropFirstAndLastPoints").value
if low_q is not None and high_q is not None:
# Get rid of first and last Q points to avoid edge effects
if crop:
low_q += 1
high_q -= 1
data_x = q_rebin.readX(0)
q_rebin = CropWorkspace(InputWorkspace=q_rebin,
OutputWorkspace=str(q_rebin),
XMin=data_x[low_q], XMax=data_x[high_q])
else:
logger.error("Data is all zeros. Check your TOF ranges.")
# Clean up the workspace for backward compatibility
data_y = q_rebin.dataY(0)
data_e = q_rebin.dataE(0)
# Again for backward compatibility, the first and last points of the
# raw output when not cropping was simply set to 0 += 1.
if crop is False:
data_y[0] = 0
data_e[0] = 1
data_y[len(data_y)-1] = 0
data_e[len(data_y)-1] = 1
# Values < 1e-12 and values where the error is greater than the value are replaced by 0+-1
for i in range(len(data_y)):
if data_y[i] < 1e-12 or data_e[i]>data_y[i]:
data_y[i]=0.0
data_e[i]=1.0
# Sanity check
if sum(data_y) == 0:
raise RuntimeError("The reflectivity is all zeros: check your peak selection")
# Avoid leaving trash behind
for ws in ['ws_event_data', 'normalized_data', 'q_workspace']:
if AnalysisDataService.doesExist(ws):
AnalysisDataService.remove(ws)
self.setProperty('OutputWorkspace', mtd[name_output_ws])
def load_data(self):
"""
Load the data. We can either load it from the specified
run numbers, or use the input workspace if no runs are specified.
"""
dataRunNumbers = self.getProperty("RunNumbers").value
ws_event_data = self.getProperty("InputWorkspace").value
if len(dataRunNumbers) > 0:
# If we have multiple files, add them
file_list = []
for item in dataRunNumbers:
# The standard mode of operation is to give a run number as input
try:
data_file = FileFinder.findRuns("REF_L%s" % item)[0]
except RuntimeError:
# Allow for a file name or file path as input
data_file = FileFinder.findRuns(item)[0]
file_list.append(data_file)
runs = reduce((lambda x, y: '%s+%s' % (x, y)), file_list)
ws_event_data = Load(Filename=runs, OutputWorkspace="REF_L_%s" % dataRunNumbers[0])
elif ws_event_data is None:
raise RuntimeError("No input data was specified")
return ws_event_data
def calculate_scattering_angle(self, ws_event_data):
"""
Compute the scattering angle
@param ws_event_data: data workspace
"""
run_object = ws_event_data.getRun()
thi_value = run_object.getProperty('thi').value[0]
thi_units = run_object.getProperty('thi').units
tthd_value = run_object.getProperty('tthd').value[0]
tthd_units = run_object.getProperty('tthd').units
# Make sure we have radians
if thi_units.lower().startswith('deg'):
thi_value *= math.pi / 180.0
if tthd_units.lower().startswith('deg'):
tthd_value *= math.pi / 180.0
theta = math.fabs(tthd_value - thi_value) / 2.
if theta < 0.001:
logger.warning("thi and tthd are equal: is this a direct beam?")
# Add the offset
angle_offset_deg = self.getProperty("AngleOffset").value
return theta + angle_offset_deg * math.pi / 180.0
#pylint: disable=too-many-arguments
def process_data(self, workspace, tof_range, crop_low_res, low_res_range,
peak_range, subtract_background, background_range):
"""
Common processing for both sample data and normalization.
"""
#TODO: The rebin and crop approach is used to be consistent with the old code.
# This should be replaced in the future.
# Rebin TOF axis
tof_max = workspace.getTofMax()
tof_min = workspace.getTofMin()
if tof_min > tof_range[1] or tof_max < tof_range[0]:
error_msg = "Requested TOF range does not match data for %s: " % str(workspace)
error_msg += "[%g, %g] found [%g, %g]" % (tof_range[0], tof_range[1],
tof_min, tof_max)
raise RuntimeError(error_msg)
tof_step = self.getProperty("TOFSteps").value
workspace = Rebin(InputWorkspace=workspace, Params=[0, tof_step, tof_max],
PreserveEvents=True, OutputWorkspace="%s_histo" % str(workspace))
# Crop TOF range
workspace = CropWorkspace(InputWorkspace=workspace,
XMin=tof_range[0], XMax=tof_range[1],
OutputWorkspace=str(workspace))
# Integrate over low resolution range
x_min = 0
x_max = self.number_of_pixels_x
if crop_low_res:
x_min = int(low_res_range[0])
x_max = int(low_res_range[1])
# Subtract background
if subtract_background:
err_weight = self.getProperty('ErrorWeighting').value
workspace = LRSubtractAverageBackground(InputWorkspace=workspace,
PeakRange=peak_range,
BackgroundRange=background_range,
LowResolutionRange=[x_min, x_max],
OutputWorkspace=str(workspace),
ErrorWeighting=err_weight)
else:
# If we don't subtract the background, we still have to integrate
# over the low resolution axis
workspace = RefRoi(InputWorkspace=workspace, IntegrateY=False,
NXPixel=self.number_of_pixels_x,
NYPixel=self.number_of_pixels_y,
ConvertToQ=False, XPixelMin=x_min, XPixelMax=x_max,
OutputWorkspace=str(workspace))
# Normalize by current proton charge
# Note that the background subtraction will use an error weighted mean
# and use 1 as the error on counts of zero. We normalize by the integrated
# current _after_ the background subtraction so that the 1 doesn't have
# to be changed to a 1/Charge.
workspace = NormaliseByCurrent(InputWorkspace=workspace, OutputWorkspace=str(workspace))
# Crop to only the selected peak region
cropped = CropWorkspace(InputWorkspace = workspace,
StartWorkspaceIndex=int(peak_range[0]),
EndWorkspaceIndex=int(peak_range[1]),
OutputWorkspace="%s_cropped" % str(workspace))
# Avoid leaving trash behind
AnalysisDataService.remove(str(workspace))
return cropped
#pylint: disable=too-many-locals,too-many-branches
def apply_scaling_factor(self, workspace): # noqa
"""
Apply scaling factor from reference scaling data
@param workspace: Mantid workspace
"""
scaling_factor_file = self.getProperty("ScalingFactorFile").value
if not os.path.isfile(scaling_factor_file):
scaling_factor_files = FileFinder.findRuns(scaling_factor_file)
if len(scaling_factor_files)>0:
scaling_factor_file = scaling_factor_files[0]
if not os.path.isfile(scaling_factor_file):
logger.error("Could not find scaling factor file %s" % scaling_factor_file)
return workspace
else:
logger.error("Could not find scaling factor file %s" % scaling_factor_file)
return workspace
# Get the incident medium
incident_medium = self.getProperty("IncidentMediumSelected").value
# Get the wavelength
lr = workspace.getRun().getProperty('LambdaRequest').value[0]
lr_value = float("{0:.2f}".format(lr))
# Get the slit information
front_slit = self.getProperty("FrontSlitName").value
back_slit = self.getProperty("BackSlitName").value
# Option to match slit widths or not
match_slit_width = self.getProperty("SlitsWidthFlag").value
s1h = abs(workspace.getRun().getProperty("%sVHeight" % front_slit).value[0])
s1w = abs(workspace.getRun().getProperty("%sHWidth" % front_slit).value[0])
try:
s2h = abs(workspace.getRun().getProperty("%sVHeight" % back_slit).value[0])
s2w = abs(workspace.getRun().getProperty("%sHWidth" % back_slit).value[0])
except RuntimeError:
# For backward compatibility with old code
logger.error("Specified slit could not be found: %s Trying S2" % back_slit)
s2h = abs(workspace.getRun().getProperty("S2VHeight").value[0])
s2w = abs(workspace.getRun().getProperty("S2HWidth").value[0])
scaling_info = "Scaling settings: %s wl=%s S1H=%s S2H=%s" % (incident_medium,
lr_value, s1h, s2h)
if match_slit_width:
scaling_info += " S1W=%s S2W=%s" % (s1w, s2w)
logger.information(scaling_info)
def _reduce(accumulation, item):
"""
Reduce function that accumulates values in a dictionary
"""
toks_item = item.split('=')
if len(toks_item)!=2:
return accumulation
if isinstance(accumulation, dict):
accumulation[toks_item[0].strip()] = toks_item[1].strip()
else:
toks_accum = accumulation.split('=')
accumulation = {toks_item[0].strip(): toks_item[1].strip(),
toks_accum[0].strip(): toks_accum[1].strip()}
return accumulation
def _value_check(key, data, reference):
"""
Check an entry against a reference value
"""
if key in data:
return abs(abs(float(data[key])) - abs(float(reference))) <= self.TOLERANCE
return False
scaling_data = open(scaling_factor_file, 'r')
file_content = scaling_data.read()
scaling_data.close()
data_found = None
for line in file_content.split('\n'):
if line.startswith('#'):
continue
# Parse the line of data and produce a dict
toks = line.split()
data_dict = reduce(_reduce, toks, {})
# Get ordered list of keys
keys = []
for token in toks:
key_value = token.split('=')
if len(key_value)==2:
keys.append(key_value[0].strip())
# Skip empty lines
if len(keys)==0:
continue
# Complain if the format is non-standard
elif len(keys)<10:
logger.error("Bad scaling factor entry\n %s" % line)
continue
# Sanity check
if keys[0] != 'IncidentMedium' and keys[1] != 'LambdaRequested' \
and keys[2] != 'S1H':
logger.error("The scaling factor file isn't standard: bad keywords")
# The S2H key has been changing in the earlier version of REFL reduction.
# Get the key from the data to make sure we are backward compatible.
s2h_key = keys[3]
s2w_key = keys[5]
if 'IncidentMedium' in data_dict \
and data_dict['IncidentMedium'].lower() == incident_medium.strip().lower() \
and _value_check('LambdaRequested', data_dict, lr_value) \
and _value_check('S1H', data_dict, s1h) \
and _value_check(s2h_key, data_dict, s2h):
if not match_slit_width or (_value_check('S1W', data_dict, s1w)
and _value_check(s2w_key, data_dict, s2w)):
data_found = data_dict
break
AddSampleLog(Workspace=workspace, LogName='isSFfound', LogText=str(data_found is not None))
if data_found is not None:
a = float(data_found['a'])
b = float(data_found['b'])
a_error = float(data_found['error_a'])
b_error = float(data_found['error_b'])
AddSampleLog(Workspace=workspace, LogName='scaling_factor_a', LogText=str(a), LogType='Number')
AddSampleLog(Workspace=workspace, LogName='scaling_factor_b', LogText=str(b), LogType='Number')
AddSampleLog(Workspace=workspace, LogName='scaling_factor_a_error', LogText=str(a_error), LogType='Number')
AddSampleLog(Workspace=workspace, LogName='scaling_factor_b_error', LogText=str(b_error), LogType='Number')
# Extract a single spectrum, just so we have the TOF axis
# to create a normalization workspace
normalization = ExtractSingleSpectrum(InputWorkspace=workspace,
OutputWorkspace="normalization",
WorkspaceIndex=0)
norm_tof = normalization.dataX(0)
norm_value = normalization.dataY(0)
norm_error = normalization.dataE(0)
for i in range(len(norm_value)):
norm_value[i] = norm_tof[i] * b + a
norm_error[i] = math.sqrt(a_error*a_error + norm_tof[i] * norm_tof[i] * b_error * b_error)
workspace = Divide(LHSWorkspace=workspace,
RHSWorkspace=normalization,
OutputWorkspace=str(workspace))
# Avoid leaving trash behind
AnalysisDataService.remove(str(normalization))
else:
logger.error("Could not find scaling factor for %s" % str(incident_medium))
return workspace
AlgorithmFactory.subscribe(LiquidsReflectometryReduction)