.. index:: MultivariateGaussianComptonProfile
The fitted function for y-Space converted values is as described by G. Romanelli. [1].
J(y) = \frac{1}{\sqrt{2\pi} \sigma_{x} \sigma_{y} \sigma_{z}} \frac{2}{\pi} \int_{0}^{1} d(\cos \theta) \int_{0}^{\frac{\pi}{2}} d \phi S^{2}(\theta, \phi) \exp \left( -\frac{y^{2}} {2 S^{2}(\theta, \phi)} \right)
Where S^{2}(\theta, \phi) is given by:
\frac{1}{S^{2}(\theta, \phi)} = \frac{\sin^{2}\theta \cos^{2}\phi}{\sigma_{x}^{2}} + \frac{\sin^{2}\theta \sin^{2}\phi}{\sigma_{y}^{2}} + \frac{\cos^{2}\theta}{\sigma_{z}^{2}}
The A_{3} Final State Effects (FSE) correction is applied as an additive correction expressed as:
-A_{3}(q)\frac{d^{3}}{dy^{3}}J(y) = \frac{\sigma_{x}^{4} + \sigma_{x}^{4} + \sigma_{x}^{4}} {9 \sqrt{2 \pi} \sigma_{x} \sigma_{y} \sigma_{z} q} \int_{0}^{1} d(\cos \theta) \int_{0}^{\frac{\pi}{2}} d \phi \left[ \frac{y^{3}}{S^{2}(\theta, \phi)^{4}} -3 \frac{y}{S^{2}(\theta, \phi)^{2}} \right] S^{2}(\theta, \phi) \exp \left( -\frac{y^{2}} {2 S^{2}(\theta, \phi)} \right)
.. attributes:: IntegrationSteps;Integer;256;Length of each dimension of integration grid (must be even)
.. properties::
[1] |
.. categories::
.. sourcelink::