Skip to content

Latest commit

 

History

History
44 lines (28 loc) · 1 KB

Gaussian.rst

File metadata and controls

44 lines (28 loc) · 1 KB

Gaussian

.. index:: Gaussian

Description

A Gaussian function (also referred to as a normal distribution) is defined as:

\mbox{Height}*\exp \left( -0.5*\frac{(x-\mbox{PeakCentre})^2}{\mbox{Sigma}^2} \right)

where

  • Height - height of peak
  • PeakCentre - centre of peak
  • Sigma - Gaussian width parameter

Note that the FWHM (Full Width Half Maximum) of a Gaussian equals 2\sqrt{2\ln 2}*\mbox{Sigma}.

The integrated peak intensity for the Gaussian is given by \mbox{height} * \mbox{sigma} * \sqrt{2\pi}.

The uncertainty for the intensity is: \mbox{intensity} * \sqrt{\left(\frac{\delta \mbox{height}}{\mbox{height}}\right)^2 + \left(\frac{\delta \mbox{sigma}}{\mbox{sigma}}\right)^2}.

The figure below illustrate this symmetric peakshape function fitted to a TOF peak:

GaussianWithConstBackground.png
.. attributes::

.. properties::

.. categories::

.. sourcelink::