forked from AmbaPant/mantid
-
Notifications
You must be signed in to change notification settings - Fork 1
/
EISFDiffSphere.py
87 lines (70 loc) · 2.62 KB
/
EISFDiffSphere.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Mantid Repository : https://github.com/mantidproject/mantid
#
# Copyright © 2007 ISIS Rutherford Appleton Laboratory UKRI,
# NScD Oak Ridge National Laboratory, European Spallation Source,
# Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS
# SPDX - License - Identifier: GPL - 3.0 +
# pylint: disable=no-init,invalid-name
"""
@author Jose Borreguero, ORNL
@date December 05, 2017
"""
import numpy as np
try:
from scipy.special import spherical_jn
def j1(z): return spherical_jn(1, z)
def j1d(z): return spherical_jn(1, z, derivative=True)
except ImportError:
# spherical_jn removed from scipy >= 1.0.0
from scipy.special import sph_jn
def j1(z): return sph_jn(1, z)[0][1]
def j1d(z): return sph_jn(1, z)[1][1]
from mantid.api import IFunction1D, FunctionFactory
class EISFDiffSphere(IFunction1D):
r"""Models the elastic incoherent scattering intensity of a particle
undergoing diffusion but confined to a spherical volume
"""
vecbessel = np.vectorize(lambda z: j1(z) / z)
def category(self):
return 'QuasiElastic'
def init(self):
# Active fitting parameters
self.declareParameter('A', 1.0, 'Amplitude')
self.declareParameter('R', 1.0, 'Sphere radius, inverse units of Q.')
def function1D(self, xvals):
r"""Calculate the intensities
Parameters
----------
xvals : sequence of floats
The domain where to evaluate the function
jacobian: 2D array
partial derivative of the function with respect to the fitting
parameters evaluated at the domain.
Returns
-------
numpy.ndarray
Function values
"""
zs = self.getParameterValue('R') * np.asarray(xvals)
return self.getParameterValue('A') * np.square(3 * self.vecbessel(zs))
def functionDeriv1D(self, xvals, jacobian):
r"""Calculate the partial derivatives
Parameters
----------
xvals : sequence of floats
The domain where to evaluate the function
jacobian: 2D array
partial derivatives of the function with respect to the fitting
parameters, evaluated at the domain.
"""
amplitude = self.getParameterValue('A')
radius = self.getParameterValue('R')
i = 0
for x in xvals:
z = radius * x
j = j1(z)/z
jacobian.set(i, 0, np.square(3 * j))
jacobian.set(i, 1, amplitude * 2 * 9 * j * (j1d(z) - j) / radius)
i += 1
# Required to have Mantid recognise the new function
FunctionFactory.subscribe(EISFDiffSphere)