-
Notifications
You must be signed in to change notification settings - Fork 0
/
spark_param.py
558 lines (499 loc) · 24.5 KB
/
spark_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
#!/usr/bin/python
# -*- coding: utf-8 -*-
import pyspark
import pyspark.ml.feature
import pyspark.mllib.linalg
import pyspark.ml.param
import pyspark.sql.functions
from pyspark.sql import functions as F
from pyspark.sql.types import FloatType
from pyspark.sql.types import DoubleType
from pyspark.sql.functions import udf
from scipy.spatial import distance
from pyspark.mllib.linalg import Vectors
from pyspark.ml.param.shared import *
from pyspark.mllib.linalg import Vectors, VectorUDT
from pyspark.ml.feature import VectorAssembler
import numpy as np
from pyspark.sql.functions import lit
from pyspark.sql.functions import levenshtein
from pyspark.sql.functions import col
from pyspark.sql.functions import desc
from pyspark.sql.functions import asc
import scipy as sp
from scipy.signal import butter, lfilter, freqz, correlate2d, sosfilt
import time
from pyspark import SparkContext, SparkConf
from pyspark.sql import SQLContext, Row
import sys
import edlib
from collections import namedtuple
weights = namedtuple("Weights", "wskl wjs wmfcc wrp wrh wbh wchroma wnotes")
m_weights = Weights(wskl=1, wjs=1, wmfcc=1, wrp=1, wrh=1, wbh=1, wchroma=1, wnotes=1)
total1 = int(round(time.time() * 1000))
confCluster = SparkConf().setAppName("MusicSimilarity Cluster")
confCluster.set("spark.driver.memory", "64g")
confCluster.set("spark.executor.memory", "64g")
confCluster.set("spark.driver.memoryOverhead", "32g")
confCluster.set("spark.executor.memoryOverhead", "32g")
#Be sure that the sum of the driver or executor memory plus the driver or executor memory overhead is always less than the value of yarn.nodemanager.resource.memory-mb
#confCluster.set("yarn.nodemanager.resource.memory-mb", "196608")
#spark.driver/executor.memory + spark.driver/executor.memoryOverhead < yarn.nodemanager.resource.memory-mb
confCluster.set("spark.yarn.executor.memoryOverhead", "4096")
#set cores of each executor and the driver -> less than avail -> more executors spawn
confCluster.set("spark.driver.cores", "36")
confCluster.set("spark.executor.cores", "36")
#confCluster.set("spark.shuffle.service.enabled", "True")
confCluster.set("spark.dynamicAllocation.enabled", "True")
#confCluster.set("spark.dynamicAllocation.initialExecutors", "16")
#confCluster.set("spark.dynamicAllocation.executorIdleTimeout", "30s")
confCluster.set("spark.dynamicAllocation.minExecutors", "15")
confCluster.set("spark.dynamicAllocation.maxExecutors", "15")
confCluster.set("yarn.nodemanager.vmem-check-enabled", "false")
repartition_count = 32
sc = SparkContext(conf=confCluster)
sqlContext = SQLContext(sc)
sc.setLogLevel("ERROR")
wskl = 1
wjs = 1
wmfcc = 1
wchroma = 1
wnotes = 1
wrp = 1
wrh = 1
wbh = 1
weights = []
time_dict = {}
def chroma_cross_correlate(chroma1_par, chroma2_par):
length1 = chroma1_par.size/12
chroma1 = np.empty([12, length1])
length2 = chroma2_par.size/12
chroma2 = np.empty([12, length2])
if(length1 > length2):
chroma1 = chroma1_par.reshape(12, length1)
chroma2 = chroma2_par.reshape(12, length2)
else:
chroma2 = chroma1_par.reshape(12, length1)
chroma1 = chroma2_par.reshape(12, length2)
#full
#correlation = np.zeros([length1 + length2 - 1])
#valid
#correlation = np.zeros([max(length1, length2) - min(length1, length2) + 1])
#same
correlation = np.zeros([max(length1, length2)])
for i in range(12):
correlation = correlation + np.correlate(chroma1[i], chroma2[i], "same")
#remove offset to get rid of initial filter peak(highpass of jump from 0-20)
correlation = correlation - correlation[0]
sos = butter(1, 0.1, 'high', analog=False, output='sos')
correlation = sosfilt(sos, correlation)[:]
return np.max(correlation)
debug_dict = {}
negjs = sc.accumulator(0)
nanjs = sc.accumulator(0)
nonpdjs = sc.accumulator(0)
negskl = sc.accumulator(0)
nanskl = sc.accumulator(0)
noninskl = sc.accumulator(0)
def jensen_shannon(vec1, vec2):
d = 13
mean1 = np.empty([d, 1])
mean1 = vec1[0:d]
cov1 = np.empty([d,13])
cov1 = vec1[d:].reshape(d, d)
div = np.inf
#div = float('NaN')
try:
cov_1_logdet = 2*np.sum(np.log(np.linalg.cholesky(cov1).diagonal()))
issing1=1
except np.linalg.LinAlgError as err:
nonpdjs.add(1)
#print("ERROR: NON POSITIVE DEFINITE MATRIX 1\n\n\n")
return div
#print(cov_1_logdet)
mean2 = np.empty([d, 1])
mean2 = vec2[0:d]
cov2 = np.empty([d,d])
cov2 = vec2[d:].reshape(d, d)
try:
cov_2_logdet = 2*np.sum(np.log(np.linalg.cholesky(cov2).diagonal()))
issing2=1
except np.linalg.LinAlgError as err:
nonpdjs.add(1)
#print("ERROR: NON POSITIVE DEFINITE MATRIX 2\n\n\n")
return div
#print(cov_2_logdet)
#==============================================
if (issing1==1) and (issing2==1):
mean_m = 0.5 * mean1 + 0.5 * mean2
cov_m = 0.5 * (cov1 + np.outer(mean1, mean1)) + 0.5 * (cov2 + np.outer(mean2, mean2)) - np.outer(mean_m, mean_m)
cov_m_logdet = 2*np.sum(np.log(np.linalg.cholesky(cov_m).diagonal()))
#print(cov_m_logdet)
try:
div = 0.5 * cov_m_logdet - 0.25 * cov_1_logdet - 0.25 * cov_2_logdet
except np.linalg.LinAlgError as err:
nonpdjs.add(1)
#print("ERROR: NON POSITIVE DEFINITE MATRIX M\n\n\n")
return div
#print("JENSEN_SHANNON_DIVERGENCE")
if np.isnan(div):
div = np.inf
nanjs.add(1)
#div = None
pass
if div <= 0:
div = 0
negjs.add(1)
pass
#print(div)
return div
#get 13 mean and 13x13 cov as vectors
def symmetric_kullback_leibler(vec1, vec2):
d = 13
mean1 = np.empty([d, 1])
mean1 = vec1[0:d]
cov1 = np.empty([d,d])
cov1 = vec1[d:].reshape(d, d)
mean2 = np.empty([d, 1])
mean2 = vec2[0:d]
cov2 = np.empty([d,d])
cov2 = vec2[d:].reshape(d, d)
div = np.inf
try:
g_chol = np.linalg.cholesky(cov1)
g_ui = np.linalg.solve(g_chol,np.eye(d))
icov1 = np.matmul(np.transpose(g_ui), g_ui)
isinv1=1
except np.linalg.LinAlgError as err:
isinv1=0
try:
g_chol = np.linalg.cholesky(cov2)
g_ui = np.linalg.solve(g_chol,np.eye(d))
icov2 = np.matmul(np.transpose(g_ui), g_ui)
isinv2=1
except np.linalg.LinAlgError as err:
isinv2=0
#================================
if (isinv1==1) and (isinv2==1):
temp_a = np.trace(np.matmul(cov1, icov2))
#temp_a = traceprod(cov1, icov2)
#print(temp_a)
temp_b = np.trace(np.matmul(cov2, icov1))
#temp_b = traceprod(cov2, icov1)
#print(temp_b)
temp_c = np.trace(np.matmul((icov1 + icov2), np.outer((mean1 - mean2), (mean1 - mean2))))
#print(temp_c)
div = 0.25 * (temp_a + temp_b + temp_c - 2*d)
else:
div = np.inf
noninskl.add(1)
#print("ERROR: NON INVERTIBLE SINGULAR COVARIANCE MATRIX \n\n\n")
if div <= 0:
#print("Temp_a: " + temp_a + "\n Temp_b: " + temp_b + "\n Temp_c: " + temp_c)
div = 0
negskl.add(1)
if np.isnan(div):
div = np.inf
nanskl.add(1)
#div = None
#print(div)
return div
#get 13 mean and 13x13 cov + var as vectors
def get_euclidean_mfcc(vec1, vec2):
mean1 = np.empty([13, 1])
mean1 = vec1[0:13]
cov1 = np.empty([13,13])
cov1 = vec1[13:].reshape(13, 13)
mean2 = np.empty([13, 1])
mean2 = vec2[0:13]
cov2 = np.empty([13,13])
cov2 = vec2[13:].reshape(13, 13)
iu1 = np.triu_indices(13)
#You need to pass the arrays as an iterable (a tuple or list), thus the correct syntax is np.concatenate((,),axis=None)
div = distance.euclidean(np.concatenate((mean1, cov1[iu1]),axis=None), np.concatenate((mean2, cov2[iu1]),axis=None))
return div
#even faster than numpy version
def naive_levenshtein(seq1, seq2):
result = edlib.align(seq1, seq2)
return(result["editDistance"])
tic1 = int(round(time.time() * 1000))
list_to_vector_udf = udf(lambda l: Vectors.dense(l), VectorUDT())
#########################################################
# Pre- Process RH and RP for Euclidean
#
rp = sc.textFile("features[0-9]*/out[0-9]*.rp")
rp = rp.map(lambda x: x.split(","))
kv_rp= rp.map(lambda x: (x[0].replace(";","").replace(".","").replace(",","").replace(" ",""), list(x[1:])))
rp_df = sqlContext.createDataFrame(kv_rp, ["id", "rp"])
rp_df = rp_df.select(rp_df["id"],list_to_vector_udf(rp_df["rp"]).alias("rp"))
rh = sc.textFile("features[0-9]*/out[0-9]*.rh")
rh = rh.map(lambda x: x.split(","))
kv_rh= rh.map(lambda x: (x[0].replace(";","").replace(".","").replace(",","").replace(" ",""), list(x[1:])))
rh_df = sqlContext.createDataFrame(kv_rh, ["id", "rh"])
rh_df = rh_df.select(rh_df["id"],list_to_vector_udf(rh_df["rh"]).alias("rh"))
#########################################################
# Pre- Process BH for Euclidean
#
bh = sc.textFile("features[0-9]*/out[0-9]*.bh")
bh = bh.map(lambda x: x.split(";"))
kv_bh = bh.map(lambda x: (x[0].replace(";","").replace(".","").replace(",","").replace(" ",""), x[1], Vectors.dense(x[2].replace(' ', '').replace('[', '').replace(']', '').split(','))))
bh_df = sqlContext.createDataFrame(kv_bh, ["id", "bpm", "bh"])
#########################################################
# Pre- Process Notes for Levenshtein
#
notes = sc.textFile("features[0-9]*/out[0-9]*.notes")
notes = notes.map(lambda x: x.split(';'))
notes = notes.map(lambda x: (x[0].replace(";","").replace(".","").replace(",","").replace(" ",""), x[1], x[2], x[3].replace("10",'K').replace("11",'L').replace("0",'A').replace("1",'B').replace("2",'C').replace("3",'D').replace("4",'E').replace("5",'F').replace("6",'G').replace("7",'H').replace("8",'I').replace("9",'J')))
notes = notes.map(lambda x: (x[0], x[1], x[2], x[3].replace(',','').replace(' ','')))
notesDf = sqlContext.createDataFrame(notes, ["id", "key", "scale", "notes"])
#########################################################
# Pre- Process Chroma for cross-correlation
#
chroma = sc.textFile("features[0-9]*/out[0-9]*.chroma")
chroma = chroma.map(lambda x: x.replace(' ', '').replace(';', ','))
chroma = chroma.map(lambda x: x.replace('.mp3,', '.mp3;').replace('.wav,', '.wav;').replace('.m4a,', '.m4a;').replace('.aiff,', '.aiff;').replace('.aif,', '.aif;').replace('.au,', '.au;').replace('.flac,', '.flac;').replace('.ogg,', '.ogg;'))
chroma = chroma.map(lambda x: x.split(';'))
#try to filter out empty elements
chroma = chroma.filter(lambda x: (not x[1] == '[]') and (x[1].startswith("[[0.") or x[1].startswith("[[1.")))
chromaRdd = chroma.map(lambda x: (x[0].replace(";","").replace(".","").replace(",","").replace(" ",""),(x[1].replace(' ', '').replace('[', '').replace(']', '').split(','))))
chromaVec = chromaRdd.map(lambda x: (x[0], Vectors.dense(x[1])))
chromaDf = sqlContext.createDataFrame(chromaVec, ["id", "chroma"])
#########################################################
# Pre- Process MFCC for SKL and JS and EUC
#
mfcc = sc.textFile("features[0-9]*/out[0-9]*.mfcckl")
mfcc = mfcc.map(lambda x: x.replace(' ', '').replace(';', ','))
mfcc = mfcc.map(lambda x: x.replace('.mp3,', '.mp3;').replace('.wav,', '.wav;').replace('.m4a,', '.m4a;').replace('.aiff,', '.aiff;').replace('.aif,', '.aif;').replace('.au,', '.au;').replace('.flac,', '.flac;').replace('.ogg,', '.ogg;'))
mfcc = mfcc.map(lambda x: x.split(';'))
mfcc = mfcc.map(lambda x: (x[0].replace(";","").replace(".","").replace(",","").replace(" ",""), x[1].replace('[', '').replace(']', '').split(',')))
mfccVec = mfcc.map(lambda x: (x[0], Vectors.dense(x[1])))
mfccDfMerged = sqlContext.createDataFrame(mfccVec, ["id", "mfccSkl"])
#########################################################
# Gather all features in one dataframe
#
featureDF = chromaDf.join(mfccDfMerged, on=["id"], how='inner')
featureDF = featureDF.join(notesDf, on=['id'], how='inner')
featureDF = featureDF.join(rp_df, on=['id'], how='inner')
featureDF = featureDF.join(rh_df, on=['id'], how='inner')
featureDF = featureDF.join(bh_df, on=['id'], how='inner').dropDuplicates().persist()
#Force lazy evaluation to evaluate with an action
trans = featureDF.count()
#print(featureDF.count())
#########################################################
# 16 Nodes, 192GB RAM each, 36 cores each (+ hyperthreading = 72)
# -> max 1152 executors
fullFeatureDF = featureDF.repartition(repartition_count).persist()
#print(fullFeatureDF.count())
#fullFeatureDF.toPandas().to_csv("featureDF.csv", encoding='utf-8')
tac1 = int(round(time.time() * 1000))
time_dict['PREPROCESS: ']= tac1 - tic1
def get_neighbors_mfcc_skl(song, featureDF):
comparator_value = song[0]["mfccSkl"]
distance_udf = F.udf(lambda x: float(symmetric_kullback_leibler(x, comparator_value)), DoubleType())
result = featureDF.withColumn('distances_skl', distance_udf(F.col('mfccSkl'))).select("id", "distances_skl")
#thresholding
result = result.filter(result.distances_skl <= 10000)
result = result.filter(result.distances_skl != np.inf)
return result
def get_neighbors_mfcc_js(song, featureDF):
comparator_value = song[0]["mfccSkl"]
distance_udf = F.udf(lambda x: float(jensen_shannon(x, comparator_value)), DoubleType())
result = featureDF.withColumn('distances_js', distance_udf(F.col('mfccSkl'))).select("id", "distances_js")
result = result.filter(result.distances_js != np.inf)
return result
def get_neighbors_rp_euclidean(song, featureDF):
comparator_value = song[0]["rp"]
distance_udf = F.udf(lambda x: float(distance.euclidean(x, comparator_value)), FloatType())
result = featureDF.withColumn('distances_rp', distance_udf(F.col('rp'))).select("id", "distances_rp")
return result
def get_neighbors_rh_euclidean(song, featureDF):
comparator_value = song[0]["rh"]
distance_udf = F.udf(lambda x: float(distance.euclidean(x, comparator_value)), FloatType())
result = featureDF.withColumn('distances_rh', distance_udf(F.col('rh'))).select("id", "distances_rh")
return result
def get_neighbors_bh_euclidean(song, featureDF):
comparator_value = song[0]["bh"]
distance_udf = F.udf(lambda x: float(distance.euclidean(x, comparator_value)), FloatType())
result = featureDF.withColumn('distances_bh', distance_udf(F.col('bh'))).select("id", "bpm", "distances_bh")
return result
def get_neighbors_mfcc_euclidean(song, featureDF):
comparator_value = song[0]["mfccSkl"]
distance_udf = F.udf(lambda x: float(get_euclidean_mfcc(x, comparator_value)), FloatType())
result = featureDF.withColumn('distances_mfcc', distance_udf(F.col('mfccSkl'))).select("id", "distances_mfcc")
return result
def get_neighbors_notes(song, featureDF):
comparator_value = song[0]["notes"]
df_merged = featureDF.withColumn("compare", lit(comparator_value))
df_levenshtein = df_merged.withColumn("distances_levenshtein", levenshtein(col("notes"), col("compare")))
#df_levenshtein.sort(col("word1_word2_levenshtein").asc()).show()
result = df_levenshtein.select("id", "key", "scale", "distances_levenshtein")
return result
def get_neighbors_chroma_corr_valid(song, featureDF):
comparator_value = song[0]["chroma"]
distance_udf = F.udf(lambda x: float(chroma_cross_correlate(x, comparator_value)), DoubleType())
result = featureDF.withColumn('distances_corr', distance_udf(F.col('chroma'))).select("id", "distances_corr")
return result
def perform_scaling(unscaled_df):
aggregated = unscaled_df.agg(F.min(unscaled_df.distances_bh),F.max(unscaled_df.distances_bh),F.mean(unscaled_df.distances_bh),F.stddev(unscaled_df.distances_bh),
F.min(unscaled_df.distances_rh),F.max(unscaled_df.distances_rh),F.mean(unscaled_df.distances_rh),F.stddev(unscaled_df.distances_rh),
F.min(unscaled_df.distances_rp),F.max(unscaled_df.distances_rp),F.mean(unscaled_df.distances_rp),F.stddev(unscaled_df.distances_rp),
F.min(unscaled_df.distances_corr),F.max(unscaled_df.distances_corr),F.mean(unscaled_df.distances_corr),F.stddev(unscaled_df.distances_corr),
F.min(unscaled_df.distances_levenshtein),F.max(unscaled_df.distances_levenshtein),F.mean(unscaled_df.distances_levenshtein),F.stddev(unscaled_df.distances_levenshtein),
F.min(unscaled_df.distances_mfcc),F.max(unscaled_df.distances_mfcc),F.mean(unscaled_df.distances_mfcc),F.stddev(unscaled_df.distances_mfcc),
F.min(unscaled_df.distances_js),F.max(unscaled_df.distances_js),F.mean(unscaled_df.distances_js),F.stddev(unscaled_df.distances_js),
F.min(unscaled_df.distances_skl),F.max(unscaled_df.distances_skl),F.mean(unscaled_df.distances_skl),F.stddev(unscaled_df.distances_skl)).persist()
##############################
#var_val = aggregated.collect()[0]["stddev_samp(distances_bh)"]
#mean_val = aggregated.collect()[0]["avg(distances_bh)"]
##############################
max_val = aggregated.collect()[0]["max(distances_rp)"]
min_val = aggregated.collect()[0]["min(distances_rp)"]
result = unscaled_df.withColumn('scaled_rp', (unscaled_df.distances_rp-min_val)/(max_val-min_val))
##############################
max_val = aggregated.collect()[0]["max(distances_rh)"]
min_val = aggregated.collect()[0]["min(distances_rh)"]
result = result.withColumn('scaled_rh', (unscaled_df.distances_rh-min_val)/(max_val-min_val))
##############################
max_val = aggregated.collect()[0]["max(distances_bh)"]
min_val = aggregated.collect()[0]["min(distances_bh)"]
result = result.withColumn('scaled_bh', (unscaled_df.distances_bh-min_val)/(max_val-min_val))
##############################
max_val = aggregated.collect()[0]["max(distances_levenshtein)"]
min_val = aggregated.collect()[0]["min(distances_levenshtein)"]
result = result.withColumn('scaled_notes', (unscaled_df.distances_levenshtein-min_val)/(max_val-min_val))
##############################
max_val = aggregated.collect()[0]["max(distances_corr)"]
min_val = aggregated.collect()[0]["min(distances_corr)"]
result = result.withColumn('scaled_chroma', (1 - (unscaled_df.distances_corr-min_val)/(max_val-min_val)))
##############################
max_val = aggregated.collect()[0]["max(distances_skl)"]
min_val = aggregated.collect()[0]["min(distances_skl)"]
result = result.withColumn('scaled_skl', (unscaled_df.distances_skl-min_val)/(max_val-min_val))
##############################
max_val = aggregated.collect()[0]["max(distances_js)"]
min_val = aggregated.collect()[0]["min(distances_js)"]
result = result.withColumn('scaled_js', (unscaled_df.distances_js-min_val)/(max_val-min_val))
##############################
max_val = aggregated.collect()[0]["max(distances_mfcc)"]
min_val = aggregated.collect()[0]["min(distances_mfcc)"]
result = result.withColumn('scaled_mfcc', (unscaled_df.distances_mfcc-min_val)/(max_val-min_val)).select("id", "key", "scale", "bpm", "scaled_rp", "scaled_rh", "scaled_bh", "scaled_notes", "scaled_chroma", "scaled_skl", "scaled_js", "scaled_mfcc")
##############################
aggregated.unpersist()
return result
def get_nearest_neighbors(song, outname):
tic1 = int(round(time.time() * 1000))
song = fullFeatureDF.filter(featureDF.id == song).collect()#
tac1 = int(round(time.time() * 1000))
time_dict['COMPARATOR: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_rp_euclidean = get_neighbors_rp_euclidean(song, fullFeatureDF).persist()
#print(neighbors_rp_euclidean.count())
tac1 = int(round(time.time() * 1000))
time_dict['RP: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_rh_euclidean = get_neighbors_rh_euclidean(song, fullFeatureDF).persist()
#print(neighbors_rh_euclidean.count())
tac1 = int(round(time.time() * 1000))
time_dict['RH: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_notes = get_neighbors_notes(song, fullFeatureDF).persist()
#print(neighbors_notes.count())
tac1 = int(round(time.time() * 1000))
time_dict['NOTE: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_mfcc_eucl = get_neighbors_mfcc_euclidean(song, fullFeatureDF).persist()
#print(neighbors_mfcc_eucl.count())
tac1 = int(round(time.time() * 1000))
time_dict['MFCC: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_bh_euclidean = get_neighbors_bh_euclidean(song, fullFeatureDF).persist()
#print(neighbors_bh_euclidean.count())
tac1 = int(round(time.time() * 1000))
time_dict['BH: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_mfcc_skl = get_neighbors_mfcc_skl(song, fullFeatureDF).persist()
#print(neighbors_mfcc_skl.count())
tac1 = int(round(time.time() * 1000))
time_dict['SKL: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_mfcc_js = get_neighbors_mfcc_js(song, fullFeatureDF).persist()
#print(neighbors_mfcc_js.count())
tac1 = int(round(time.time() * 1000))
time_dict['JS: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
neighbors_chroma = get_neighbors_chroma_corr_valid(song, fullFeatureDF).persist()
#print(neighbors_chroma.count())
tac1 = int(round(time.time() * 1000))
time_dict['CHROMA: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
mergedSim = neighbors_mfcc_eucl.join(neighbors_rp_euclidean, on=['id'], how='inner').persist()
mergedSim = mergedSim.join(neighbors_bh_euclidean, on=['id'], how='inner').persist()
mergedSim = mergedSim.join(neighbors_rh_euclidean, on=['id'], how='inner').persist()
mergedSim = mergedSim.join(neighbors_notes, on=['id'], how='inner').persist()
mergedSim = mergedSim.join(neighbors_chroma, on=['id'], how='inner').persist()
mergedSim = mergedSim.join(neighbors_mfcc_skl, on=['id'], how='inner').persist()
mergedSim = mergedSim.join(neighbors_mfcc_js, on=['id'], how='inner').dropDuplicates().persist()
#print(mergedSim.count())
tac1 = int(round(time.time() * 1000))
time_dict['JOIN: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
scaledSim = perform_scaling(mergedSim).persist()
tac1 = int(round(time.time() * 1000))
time_dict['SCALE: ']= tac1 - tic1
tic1 = int(round(time.time() * 1000))
scaledSim = scaledSim.withColumn('aggregated', (scaledSim.scaled_notes + scaledSim.scaled_mfcc + scaledSim.scaled_chroma + scaledSim.scaled_bh + scaledSim.scaled_rp + scaledSim.scaled_skl + scaledSim.scaled_js + scaledSim.scaled_rh) / 8)
scaledSim = scaledSim.orderBy('aggregated', ascending=True)
scaledSim.show()
neighbors_rp_euclidean.unpersist()
neighbors_rh_euclidean.unpersist()
neighbors_notes.unpersist()
neighbors_mfcc_eucl.unpersist()
neighbors_bh_euclidean.unpersist()
neighbors_mfcc_skl.unpersist()
neighbors_mfcc_js.unpersist()
neighbors_chroma.unpersist()
mergedSim.unpersist()
scaledSim.unpersist()
tac1 = int(round(time.time() * 1000))
time_dict['AGG: ']= tac1 - tic1
return scaledSim
if len (sys.argv) < 2:
song1 = "music/Classical/Katrine_Gislinge-Fr_Elise.mp3" #1517 artists
song1 = "music/Ooby_Dooby/roy_orbison+Black_and_White_Night+05-Ooby_Dooby.mp3"
song2 = "music/Rock & Pop/Sabaton-Primo_Victoria.mp3" #1517 artists
song2 = "music/Let_It_Be/beatles+Let_It_Be+06-Let_It_Be.mp3"
else:
song1 = sys.argv[1]
song2 = sys.argv[1]
song1 = song1.replace(";","").replace(".","").replace(",","").replace(" ","")#.encode('utf-8','replace')
song2 = song2.replace(";","").replace(".","").replace(",","").replace(" ","")#.encode('utf-8','replace')
tic1 = int(round(time.time() * 1000))
res1 = get_nearest_neighbors(song1, "MERGED_FULL_SONG1.csv").persist()
tac1 = int(round(time.time() * 1000))
time_dict['MERGED_FULL_SONG1: ']= tac1 - tic1
tic2 = int(round(time.time() * 1000))
res2 = get_nearest_neighbors(song2, "MERGED_FULL_SONG2.csv").persist()
tac2 = int(round(time.time() * 1000))
time_dict['MERGED_FULL_SONG2: ']= tac2 - tic2
total2 = int(round(time.time() * 1000))
time_dict['MERGED_TOTAL: ']= total2 - total1
tic1 = int(round(time.time() * 1000))
res1.toPandas().to_csv("MERGED_FULL_SONG1.csv", encoding='utf-8')
res1.unpersist()
tac1 = int(round(time.time() * 1000))
time_dict['CSV1: ']= tac1 - tic1
tic2 = int(round(time.time() * 1000))
res2.toPandas().to_csv("MERGED_FULL_SONG2.csv", encoding='utf-8')
res2.unpersist()
tac2 = int(round(time.time() * 1000))
time_dict['CSV2: ']= tac2 - tic2
print time_dict
print "\n\n"
debug_dict['Negative JS: ']= negjs.value
debug_dict['Nan JS: ']= nanjs.value
debug_dict['Non Positive Definite JS: ']= nonpdjs.value
debug_dict['Negative SKL: ']= negskl.value
debug_dict['Nan SKL: ']= nanskl.value
debug_dict['Non Invertible SKL: ']= noninskl.value
print debug_dict
featureDF.unpersist()