本仓库包含了多种基于 JavaScript 的算法与数据结构。
每种算法和数据结构都有自己的 README 并提供相关说明以及进一步阅读和 YouTube 视频。
Read this in other languages: English, 繁體中文, 한국어, Polski, Français, Español, Português
数据结构是在计算机中 组织和存储数 据的一种特殊方式, 它可以高效地 访问和修改 数据。更确切地说, 数据结构是数据值的集合, 它们之间的关系、函数或操作可以应用于数据。
B
- 初学者, A
- 进阶
算法是如何解决一类问题的明确规范。 算法是一组精确定义操作序列的规则。
- 数学
B
Bit 操控 - set/get/update/clear 位, 乘以/除以 二进制位, 变负 等.B
阶乘B
斐波那契数B
素数检测 (排除法)B
欧几里得算法 - 计算最大公约数 (GCD)B
最小公倍数 (LCM)B
素数筛 - 查找所有素数达到任何给定限制B
判断2次方数 - 检查数字是否为2的幂 (原生和按位算法)B
杨辉三角形A
整数拆分A
割圆术 - 基于N-gons的近似π计算- 集合
- 字符串
- 搜索
- 排序
- 树
- 图
B
深度优先搜索 (DFS)B
广度优先搜索 (BFS)A
戴克斯特拉算法 - 找到图中所有顶点的最短路径A
贝尔曼-福特算法 - 找到图中所有顶点的最短路径A
弗洛伊德算法 - 找到所有顶点对 之间的最短路径A
判圈算法 - 对于有向图和无向图 (基于DFS和不相交集的版本)A
普林演算法 - 寻找加权无向图的最小生成树 (MST)B
克鲁斯克尔演算法 - 寻找加权无向图的最小生成树 (MST)A
拓扑排序 - DFS 方法A
关节点 - Tarjan算法 (基于DFS)A
桥 - 基于DFS的算法A
欧拉回径与一笔画问题 - Fleury的算法 - 一次访问每个边A
哈密顿图 - 恰好访问每个顶点一次A
强连通分量 - Kosaraju算法A
旅行推销员问题 - 尽可能以最短的路线访问每个城市并返回原始城市
- 未分类
算法范式是基于类的设计的通用方法或方法的算法。 这是一个比算法概念更高的抽象, 就像一个 算法是比计算机程序更高的抽象。
-
BF算法 - 查找/搜索 所有可能性并选择最佳解决方案
-
贪心法 - 在当前选择最佳选项, 不考虑以后情况
-
分治法 - 将问题分成较小的部分, 然后解决这些部分
-
动态编程 - 使用以前找到的子解决方案构建解决方案
-
B
斐波那契数 -
B
跳跃游戏 -
B
独特路径 -
B
雨水收集 - 疏导雨水问题 -
A
莱温斯坦距离 - 两个序列之间的最小编辑距离 -
A
最长公共子序列 (LCS) -
A
最长公共子串 -
A
最长递增子序列 -
A
最短公共子序列 -
A
0-1背包问题 -
A
整数拆分 -
A
最大子数列 -
A
弗洛伊德算法 - 找到所有顶点对之间的最短路径 -
A
贝尔曼-福特算法 - 找到所有图顶点的最短路径 -
回溯法 - 类似于 BF算法 试图产生所有可能的解决方案, 但每次生成解决方案测试如果它满足所有条件, 那么只有继续生成后续解决方案。 否则回溯并继续寻找不同路径的解决方案。
-
Branch & Bound
安装依赖
npm install
执行测试
npm test
按照名称执行测试
npm test -- 'LinkedList'
Playground
你可以在./src/playground/playground.js
文件中操作数据结构与算法, 并在./src/playground/__test__/playground.test.js
中编写测试。
然后, 只需运行以下命令来测试你的 Playground 是否按无误:
npm test -- 'playground'
大O符号中指定的算法的增长顺序。
以下是一些最常用的 大O标记法 列表以及它们与不同大小输入数据的性能比较。
大O标记法 | 计算10个元素 | 计算100个元素 | 计算1000个元素 |
---|---|---|---|
O(1) | 1 | 1 | 1 |
O(log N) | 3 | 6 | 9 |
O(N) | 10 | 100 | 1000 |
O(N log N) | 30 | 600 | 9000 |
O(N^2) | 100 | 10000 | 1000000 |
O(2^N) | 1024 | 1.26e+29 | 1.07e+301 |
O(N!) | 3628800 | 9.3e+157 | 4.02e+2567 |
数据结构 | 连接 | 查找 | 插入 | 删除 |
---|---|---|---|---|
数组 | 1 | n | n | n |
栈 | n | n | 1 | 1 |
队列 | n | n | 1 | 1 |
链表 | n | n | 1 | 1 |
哈希表 | - | n | n | n |
二分查找树 | n | n | n | n |
B树 | log(n) | log(n) | log(n) | log(n) |
红黑树 | log(n) | log(n) | log(n) | log(n) |
AVL树 | log(n) | log(n) | log(n) | log(n) |
名称 | 最优 | 平均 | 最坏 | 内存 | 稳定 |
---|---|---|---|---|---|
冒泡排序 | n | n^2 | n^2 | 1 | Yes |
插入排序 | n | n^2 | n^2 | 1 | Yes |
选择排序 | n^2 | n^2 | n^2 | 1 | No |
堆排序 | n log(n) | n log(n) | n log(n) | 1 | No |
归并排序 | n log(n) | n log(n) | n log(n) | n | Yes |
快速排序 | n log(n) | n log(n) | n^2 | log(n) | No |
希尔排序 | n log(n) | 取决于差距序列 | n (log(n))^2 | 1 | No |