This project aimed to classify the heart beat types with the 1D-CNN model trained with the MIT-BIH dataset.
Status | Act |
---|---|
Finished | Data preprocess |
Finished | Data analysis |
Finished | Base model created |
On progress | Model improvement |
Testing on different datasets |
Project hierarchy is below with subfolders and files:
ecg-anomaly-detection
|-- LICENSE
|-- README.md
|-- requirements.txt
|-- main.py
|-- train.py
|-- wave_visualize.py
\-- model
|-- __init__.py
|-- model.py
\-- trained_models
|-- (trained models, going to be saved here)
\-- logs
|-- (tensorboard logs, going to be saved here)
\-- data
|-- __init__.py
|-- data_generator.py
|-- txt2csv.py
|-- convert_all_txt2csv.py
\-- raw
|-- 100.csv
|-- 101.csv
|-- (45 more files ...)
|-- 234.csv
\-- annotations
\-- csv
|-- 100annotations.csv
|-- 101annotations.csv
|-- (45 more files ...)
|-- 234annotations.csv
\-- txt
|-- 100annotations.txt
|-- 101annotations.txt
|-- (45 more files ...)
|-- 234annotations.txt
- Tested on Ubuntu 18.04 and with Python 3.7.x
- Anaconda 4.8.3 (or Miniconda)
- Python Libraries
- NumPy
- Tensorflow 2.x
- Matplotlib
- Scikit-Learn
- Pandas
- PyQT5 (for Wave Visualizing)
- Tqdm
Sample monitor is above.
- ✔️ Data files uploaded
- ✔️ Trained models uploaded
Link: https://drive.google.com/open?id=188bqrXPn23Ad6FJxwbBDyfhJpo8rwUdV
For more further questions
- E-mail: omerf.sarioglu@gmail.com
- LinkedIn: omerfsarioglu