-
Notifications
You must be signed in to change notification settings - Fork 178
/
trie.go
813 lines (725 loc) · 29.5 KB
/
trie.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
package trie
import (
"encoding/json"
"fmt"
"io"
"sync"
"github.com/onflow/flow-go/ledger"
"github.com/onflow/flow-go/ledger/common/bitutils"
"github.com/onflow/flow-go/ledger/complete/mtrie/node"
)
// MTrie represents a perfect in-memory full binary Merkle tree with uniform height.
// For a detailed description of the storage model, please consult `mtrie/README.md`
//
// A MTrie is a thin wrapper around a the trie's root Node. An MTrie implements the
// logic for forming MTrie-graphs from the elementary nodes. Specifically:
// - how Nodes (graph vertices) form a Trie,
// - how register values are read from the trie,
// - how Merkle proofs are generated from a trie, and
// - how a new Trie with updated values is generated.
//
// `MTrie`s are _immutable_ data structures. Updating register values is implemented through
// copy-on-write, which creates a new `MTrie`. For minimal memory consumption, all sub-tries
// that where not affected by the write operation are shared between the original MTrie
// (before the register updates) and the updated MTrie (after the register writes).
//
// MTrie expects that for a specific path, the register's key never changes.
//
// DEFINITIONS and CONVENTIONS:
// - HEIGHT of a node v in a tree is the number of edges on the longest downward path
// between v and a tree leaf. The height of a tree is the height of its root.
// The height of a Trie is always the height of the fully-expanded tree.
type MTrie struct {
root *node.Node
regCount uint64 // number of registers allocated in the trie
regSize uint64 // size of registers allocated in the trie
}
// NewEmptyMTrie returns an empty Mtrie (root is nil)
func NewEmptyMTrie() *MTrie {
return &MTrie{root: nil}
}
// IsEmpty checks if a trie is empty.
//
// An empty try doesn't mean a trie with no allocated registers.
func (mt *MTrie) IsEmpty() bool {
return mt.root == nil
}
// NewMTrie returns a Mtrie given the root
func NewMTrie(root *node.Node, regCount uint64, regSize uint64) (*MTrie, error) {
if root != nil && root.Height() != ledger.NodeMaxHeight {
return nil, fmt.Errorf("height of root node must be %d but is %d, hash: %s", ledger.NodeMaxHeight, root.Height(), root.Hash().String())
}
return &MTrie{
root: root,
regCount: regCount,
regSize: regSize,
}, nil
}
// RootHash returns the trie's root hash.
// Concurrency safe (as Tries are immutable structures by convention)
func (mt *MTrie) RootHash() ledger.RootHash {
if mt.IsEmpty() {
// case of an empty trie
return EmptyTrieRootHash()
}
return ledger.RootHash(mt.root.Hash())
}
// AllocatedRegCount returns the number of allocated registers in the trie.
// Concurrency safe (as Tries are immutable structures by convention)
func (mt *MTrie) AllocatedRegCount() uint64 {
return mt.regCount
}
// AllocatedRegSize returns the size of allocated registers in the trie.
// Concurrency safe (as Tries are immutable structures by convention)
func (mt *MTrie) AllocatedRegSize() uint64 {
return mt.regSize
}
// RootNode returns the Trie's root Node
// Concurrency safe (as Tries are immutable structures by convention)
func (mt *MTrie) RootNode() *node.Node {
return mt.root
}
// String returns the trie's string representation.
// Concurrency safe (as Tries are immutable structures by convention)
func (mt *MTrie) String() string {
if mt.IsEmpty() {
return fmt.Sprintf("Empty Trie with default root hash: %x\n", mt.RootHash())
}
trieStr := fmt.Sprintf("Trie root hash: %x\n", mt.RootHash())
return trieStr + mt.root.FmtStr("", "")
}
// UnsafeValueSizes returns payload value sizes for the given paths.
// UNSAFE: requires _all_ paths to have a length of mt.Height bits.
// CAUTION: while getting payload value sizes, `paths` is permuted IN-PLACE for optimized processing.
// Return:
// - `sizes` []int
// For each path, the corresponding payload value size is written into sizes. AFTER
// the size operation completes, the order of `path` and `sizes` are such that
// for `path[i]` the corresponding register value size is referenced by `sizes[i]`.
//
// TODO move consistency checks from Forest into Trie to obtain a safe, self-contained API
func (mt *MTrie) UnsafeValueSizes(paths []ledger.Path) []int {
sizes := make([]int, len(paths)) // pre-allocate slice for the result
valueSizes(sizes, paths, mt.root)
return sizes
}
// valueSizes returns value sizes of all the registers in `paths“ in subtree with `head` as root node.
// For each `path[i]`, the corresponding value size is written into `sizes[i]` for the same index `i`.
// CAUTION:
// - while reading the payloads, `paths` is permuted IN-PLACE for optimized processing.
// - unchecked requirement: all paths must go through the `head` node
func valueSizes(sizes []int, paths []ledger.Path, head *node.Node) {
// check for empty paths
if len(paths) == 0 {
return
}
// path not found
if head == nil {
return
}
// reached a leaf node
if head.IsLeaf() {
for i, p := range paths {
if *head.Path() == p {
payload := head.Payload()
if payload != nil {
sizes[i] = payload.Value().Size()
}
// NOTE: break isn't used here because precondition
// doesn't require paths being deduplicated.
}
}
return
}
// reached an interim node with only one path
if len(paths) == 1 {
path := paths[0][:]
// traverse nodes following the path until a leaf node or nil node is reached.
// "for" loop helps to skip partition and recursive call when there's only one path to follow.
for {
depth := ledger.NodeMaxHeight - head.Height() // distance to the tree root
bit := bitutils.ReadBit(path, depth)
if bit == 0 {
head = head.LeftChild()
} else {
head = head.RightChild()
}
if head.IsLeaf() {
break
}
}
valueSizes(sizes, paths, head)
return
}
// reached an interim node with more than one paths
// partition step to quick sort the paths:
// lpaths contains all paths that have `0` at the partitionIndex
// rpaths contains all paths that have `1` at the partitionIndex
depth := ledger.NodeMaxHeight - head.Height() // distance to the tree root
partitionIndex := SplitPaths(paths, depth)
lpaths, rpaths := paths[:partitionIndex], paths[partitionIndex:]
lsizes, rsizes := sizes[:partitionIndex], sizes[partitionIndex:]
// read values from left and right subtrees in parallel
parallelRecursionThreshold := 32 // threshold to avoid the parallelization going too deep in the recursion
if len(lpaths) < parallelRecursionThreshold || len(rpaths) < parallelRecursionThreshold {
valueSizes(lsizes, lpaths, head.LeftChild())
valueSizes(rsizes, rpaths, head.RightChild())
} else {
// concurrent read of left and right subtree
wg := sync.WaitGroup{}
wg.Add(1)
go func() {
valueSizes(lsizes, lpaths, head.LeftChild())
wg.Done()
}()
valueSizes(rsizes, rpaths, head.RightChild())
wg.Wait() // wait for all threads
}
}
// ReadSinglePayload reads and returns a payload for a single path.
func (mt *MTrie) ReadSinglePayload(path ledger.Path) *ledger.Payload {
return readSinglePayload(path, mt.root)
}
// readSinglePayload reads and returns a payload for a single path in subtree with `head` as root node.
func readSinglePayload(path ledger.Path, head *node.Node) *ledger.Payload {
pathBytes := path[:]
if head == nil {
return ledger.EmptyPayload()
}
depth := ledger.NodeMaxHeight - head.Height() // distance to the tree root
// Traverse nodes following the path until a leaf node or nil node is reached.
for !head.IsLeaf() {
bit := bitutils.ReadBit(pathBytes, depth)
if bit == 0 {
head = head.LeftChild()
} else {
head = head.RightChild()
}
depth++
}
if head != nil && *head.Path() == path {
return head.Payload()
}
return ledger.EmptyPayload()
}
// UnsafeRead reads payloads for the given paths.
// UNSAFE: requires _all_ paths to have a length of mt.Height bits.
// CAUTION: while reading the payloads, `paths` is permuted IN-PLACE for optimized processing.
// Return:
// - `payloads` []*ledger.Payload
// For each path, the corresponding payload is written into payloads. AFTER
// the read operation completes, the order of `path` and `payloads` are such that
// for `path[i]` the corresponding register value is referenced by 0`payloads[i]`.
//
// TODO move consistency checks from Forest into Trie to obtain a safe, self-contained API
func (mt *MTrie) UnsafeRead(paths []ledger.Path) []*ledger.Payload {
payloads := make([]*ledger.Payload, len(paths)) // pre-allocate slice for the result
read(payloads, paths, mt.root)
return payloads
}
// read reads all the registers in subtree with `head` as root node. For each
// `path[i]`, the corresponding payload is written into `payloads[i]` for the same index `i`.
// CAUTION:
// - while reading the payloads, `paths` is permuted IN-PLACE for optimized processing.
// - unchecked requirement: all paths must go through the `head` node
func read(payloads []*ledger.Payload, paths []ledger.Path, head *node.Node) {
// check for empty paths
if len(paths) == 0 {
return
}
// path not found
if head == nil {
for i := range paths {
payloads[i] = ledger.EmptyPayload()
}
return
}
// reached a leaf node
if head.IsLeaf() {
for i, p := range paths {
if *head.Path() == p {
payloads[i] = head.Payload()
} else {
payloads[i] = ledger.EmptyPayload()
}
}
return
}
// reached an interim node
if len(paths) == 1 {
// call readSinglePayload to skip partition and recursive calls when there is only one path
payloads[0] = readSinglePayload(paths[0], head)
return
}
// partition step to quick sort the paths:
// lpaths contains all paths that have `0` at the partitionIndex
// rpaths contains all paths that have `1` at the partitionIndex
depth := ledger.NodeMaxHeight - head.Height() // distance to the tree root
partitionIndex := SplitPaths(paths, depth)
lpaths, rpaths := paths[:partitionIndex], paths[partitionIndex:]
lpayloads, rpayloads := payloads[:partitionIndex], payloads[partitionIndex:]
// read values from left and right subtrees in parallel
parallelRecursionThreshold := 32 // threshold to avoid the parallelization going too deep in the recursion
if len(lpaths) < parallelRecursionThreshold || len(rpaths) < parallelRecursionThreshold {
read(lpayloads, lpaths, head.LeftChild())
read(rpayloads, rpaths, head.RightChild())
} else {
// concurrent read of left and right subtree
wg := sync.WaitGroup{}
wg.Add(1)
go func() {
read(lpayloads, lpaths, head.LeftChild())
wg.Done()
}()
read(rpayloads, rpaths, head.RightChild())
wg.Wait() // wait for all threads
}
}
// NewTrieWithUpdatedRegisters constructs a new trie containing all registers from the parent trie,
// and returns:
// - updated trie
// - max depth touched during update (this isn't affected by prune flag)
// - error
//
// The key-value pairs specify the registers whose values are supposed to hold updated values
// compared to the parent trie. Constructing the new trie is done in a COPY-ON-WRITE manner:
// - The original trie remains unchanged.
// - subtries that remain unchanged are from the parent trie instead of copied.
//
// UNSAFE: method requires the following conditions to be satisfied:
// - keys are NOT duplicated
// - requires _all_ paths to have a length of mt.Height bits.
//
// CAUTION: `updatedPaths` and `updatedPayloads` are permuted IN-PLACE for optimized processing.
// CAUTION: MTrie expects that for a specific path, the payload's key never changes.
// TODO: move consistency checks from MForest to here, to make API safe and self-contained
func NewTrieWithUpdatedRegisters(
parentTrie *MTrie,
updatedPaths []ledger.Path,
updatedPayloads []ledger.Payload,
prune bool,
) (*MTrie, uint16, error) {
updatedRoot, regCountDelta, regSizeDelta, lowestHeightTouched := update(
ledger.NodeMaxHeight,
parentTrie.root,
updatedPaths,
updatedPayloads,
nil,
prune,
)
updatedTrieRegCount := int64(parentTrie.AllocatedRegCount()) + regCountDelta
updatedTrieRegSize := int64(parentTrie.AllocatedRegSize()) + regSizeDelta
maxDepthTouched := uint16(ledger.NodeMaxHeight - lowestHeightTouched)
updatedTrie, err := NewMTrie(updatedRoot, uint64(updatedTrieRegCount), uint64(updatedTrieRegSize))
if err != nil {
return nil, 0, fmt.Errorf("constructing updated trie failed: %w", err)
}
return updatedTrie, maxDepthTouched, nil
}
// updateResult is a wrapper of return values from update().
// It's used to communicate values from goroutine.
type updateResult struct {
child *node.Node
allocatedRegCountDelta int64
allocatedRegSizeDelta int64
lowestHeightTouched int
}
// update traverses the subtree, updates the stored registers, and returns:
// - new or original node (n)
// - allocated register count delta in subtrie (allocatedRegCountDelta)
// - allocated register size delta in subtrie (allocatedRegSizeDelta)
// - lowest height reached during recursive update in subtrie (lowestHeightTouched)
//
// allocatedRegCountDelta and allocatedRegSizeDelta are used to compute updated
// trie's allocated register count and size. lowestHeightTouched is used to
// compute max depth touched during update.
// CAUTION: while updating, `paths` and `payloads` are permuted IN-PLACE for optimized processing.
// UNSAFE: method requires the following conditions to be satisfied:
// - paths all share the same common prefix [0 : mt.maxHeight-1 - nodeHeight)
// (excluding the bit at index headHeight)
// - paths are NOT duplicated
func update(
nodeHeight int, parentNode *node.Node,
paths []ledger.Path, payloads []ledger.Payload, compactLeaf *node.Node,
prune bool,
) (n *node.Node, allocatedRegCountDelta int64, allocatedRegSizeDelta int64, lowestHeightTouched int) {
// No new paths to write
if len(paths) == 0 {
// check is a compactLeaf from a higher height is still left.
if compactLeaf != nil {
// create a new node for the compact leaf path and payload. The old node shouldn't
// be recycled as it is still used by the tree copy before the update.
n = node.NewLeaf(*compactLeaf.Path(), compactLeaf.Payload(), nodeHeight)
return n, 0, 0, nodeHeight
}
return parentNode, 0, 0, nodeHeight
}
if len(paths) == 1 && parentNode == nil && compactLeaf == nil {
n = node.NewLeaf(paths[0], payloads[0].DeepCopy(), nodeHeight)
if payloads[0].IsEmpty() {
// Unallocated register doesn't affect allocatedRegCountDelta and allocatedRegSizeDelta.
return n, 0, 0, nodeHeight
}
return n, 1, int64(payloads[0].Size()), nodeHeight
}
if parentNode != nil && parentNode.IsLeaf() { // if we're here then compactLeaf == nil
// check if the parent node path is among the updated paths
found := false
parentPath := *parentNode.Path()
for i, p := range paths {
if p == parentPath {
// the case where the recursion stops: only one path to update
if len(paths) == 1 {
if !parentNode.Payload().ValueEquals(&payloads[i]) {
n = node.NewLeaf(paths[i], payloads[i].DeepCopy(), nodeHeight)
allocatedRegCountDelta, allocatedRegSizeDelta =
computeAllocatedRegDeltas(parentNode.Payload(), &payloads[i])
return n, allocatedRegCountDelta, allocatedRegSizeDelta, nodeHeight
}
// avoid creating a new node when the same payload is written
return parentNode, 0, 0, nodeHeight
}
// the case where the recursion carries on: len(paths)>1
found = true
allocatedRegCountDelta, allocatedRegSizeDelta =
computeAllocatedRegDeltasFromHigherHeight(parentNode.Payload())
break
}
}
if !found {
// if the parent node carries a path not included in the input path, then the parent node
// represents a compact leaf that needs to be carried down the recursion.
compactLeaf = parentNode
}
}
// in the remaining code: the registers to update are strictly larger than 1:
// - either len(paths)>1
// - or len(paths) == 1 and compactLeaf!= nil
// - or len(paths) == 1 and parentNode != nil && !parentNode.IsLeaf()
// Split paths and payloads to recurse:
// lpaths contains all paths that have `0` at the partitionIndex
// rpaths contains all paths that have `1` at the partitionIndex
depth := ledger.NodeMaxHeight - nodeHeight // distance to the tree root
partitionIndex := splitByPath(paths, payloads, depth)
lpaths, rpaths := paths[:partitionIndex], paths[partitionIndex:]
lpayloads, rpayloads := payloads[:partitionIndex], payloads[partitionIndex:]
// check if there is a compact leaf that needs to get deep to height 0
var lcompactLeaf, rcompactLeaf *node.Node
if compactLeaf != nil {
// if yes, check which branch it will go to.
path := *compactLeaf.Path()
if bitutils.ReadBit(path[:], depth) == 0 {
lcompactLeaf = compactLeaf
} else {
rcompactLeaf = compactLeaf
}
}
// set the parent node children
var lchildParent, rchildParent *node.Node
if parentNode != nil {
lchildParent = parentNode.LeftChild()
rchildParent = parentNode.RightChild()
}
// recurse over each branch
var lChild, rChild *node.Node
var lRegCountDelta, rRegCountDelta int64
var lRegSizeDelta, rRegSizeDelta int64
var lLowestHeightTouched, rLowestHeightTouched int
parallelRecursionThreshold := 16
if len(lpaths) < parallelRecursionThreshold || len(rpaths) < parallelRecursionThreshold {
// runtime optimization: if there are _no_ updates for either left or right sub-tree, proceed single-threaded
lChild, lRegCountDelta, lRegSizeDelta, lLowestHeightTouched = update(nodeHeight-1, lchildParent, lpaths, lpayloads, lcompactLeaf, prune)
rChild, rRegCountDelta, rRegSizeDelta, rLowestHeightTouched = update(nodeHeight-1, rchildParent, rpaths, rpayloads, rcompactLeaf, prune)
} else {
// runtime optimization: process the left child is a separate thread
// Since we're receiving 4 values from goroutine, use a
// struct and channel to reduce allocs/op.
// Although WaitGroup approach can be faster than channel (esp. with 2+ goroutines),
// we only use 1 goroutine here and need to communicate results from it. So using
// channel is faster and uses fewer allocs/op in this case.
results := make(chan updateResult, 1)
go func(retChan chan<- updateResult) {
child, regCountDelta, regSizeDelta, lowestHeightTouched := update(nodeHeight-1, lchildParent, lpaths, lpayloads, lcompactLeaf, prune)
retChan <- updateResult{child, regCountDelta, regSizeDelta, lowestHeightTouched}
}(results)
rChild, rRegCountDelta, rRegSizeDelta, rLowestHeightTouched = update(nodeHeight-1, rchildParent, rpaths, rpayloads, rcompactLeaf, prune)
// Wait for results from goroutine.
ret := <-results
lChild, lRegCountDelta, lRegSizeDelta, lLowestHeightTouched = ret.child, ret.allocatedRegCountDelta, ret.allocatedRegSizeDelta, ret.lowestHeightTouched
}
allocatedRegCountDelta += lRegCountDelta + rRegCountDelta
allocatedRegSizeDelta += lRegSizeDelta + rRegSizeDelta
lowestHeightTouched = minInt(lLowestHeightTouched, rLowestHeightTouched)
// mitigate storage exhaustion attack: avoids creating a new node when the exact same
// payload is re-written at a register. CAUTION: we only check that the children are
// unchanged. This is only sufficient for interim nodes (for leaf nodes, the children
// might be unchanged, i.e. both nil, but the payload could have changed).
if !parentNode.IsLeaf() && lChild == lchildParent && rChild == rchildParent {
return parentNode, 0, 0, lowestHeightTouched
}
// In case the parent node was a leaf, we _cannot reuse_ it, because we potentially
// updated registers in the sub-trie
if prune {
n = node.NewInterimCompactifiedNode(nodeHeight, lChild, rChild)
return n, allocatedRegCountDelta, allocatedRegSizeDelta, lowestHeightTouched
}
n = node.NewInterimNode(nodeHeight, lChild, rChild)
return n, allocatedRegCountDelta, allocatedRegSizeDelta, lowestHeightTouched
}
// computeAllocatedRegDeltasFromHigherHeight returns the deltas
// needed to compute the allocated reg count and reg size when
// a payload is updated or unallocated at a lower height.
func computeAllocatedRegDeltasFromHigherHeight(oldPayload *ledger.Payload) (allocatedRegCountDelta, allocatedRegSizeDelta int64) {
if !oldPayload.IsEmpty() {
// Allocated register will be updated or unallocated at lower height.
allocatedRegCountDelta--
}
oldPayloadSize := oldPayload.Size()
allocatedRegSizeDelta -= int64(oldPayloadSize)
return
}
// computeAllocatedRegDeltas returns the allocated reg count
// and reg size deltas computed from old payload and new payload.
// PRECONDITION: !oldPayload.Equals(newPayload)
func computeAllocatedRegDeltas(oldPayload, newPayload *ledger.Payload) (allocatedRegCountDelta, allocatedRegSizeDelta int64) {
allocatedRegCountDelta = 0
if newPayload.IsEmpty() {
// Old payload is not empty while new payload is empty.
// Allocated register will be unallocated.
allocatedRegCountDelta = -1
} else if oldPayload.IsEmpty() {
// Old payload is empty while new payload is not empty.
// Unallocated register will be allocated.
allocatedRegCountDelta = 1
}
oldPayloadSize := oldPayload.Size()
newPayloadSize := newPayload.Size()
allocatedRegSizeDelta = int64(newPayloadSize - oldPayloadSize)
return
}
// UnsafeProofs provides proofs for the given paths.
//
// CAUTION: while updating, `paths` and `proofs` are permuted IN-PLACE for optimized processing.
// UNSAFE: requires _all_ paths to have a length of mt.Height bits.
// Paths in the input query don't have to be deduplicated, though deduplication would
// result in allocating less dynamic memory to store the proofs.
func (mt *MTrie) UnsafeProofs(paths []ledger.Path) *ledger.TrieBatchProof {
batchProofs := ledger.NewTrieBatchProofWithEmptyProofs(len(paths))
prove(mt.root, paths, batchProofs.Proofs)
return batchProofs
}
// prove traverses the subtree and stores proofs for the given register paths in
// the provided `proofs` slice
// CAUTION: while updating, `paths` and `proofs` are permuted IN-PLACE for optimized processing.
// UNSAFE: method requires the following conditions to be satisfied:
// - paths all share the same common prefix [0 : mt.maxHeight-1 - nodeHeight)
// (excluding the bit at index headHeight)
func prove(head *node.Node, paths []ledger.Path, proofs []*ledger.TrieProof) {
// check for empty paths
if len(paths) == 0 {
return
}
// we've reached the end of a trie
// and path is not found (noninclusion proof)
if head == nil {
// by default, proofs are non-inclusion proofs
return
}
// we've reached a leaf
if head.IsLeaf() {
for i, path := range paths {
// value matches (inclusion proof)
if *head.Path() == path {
proofs[i].Path = *head.Path()
proofs[i].Payload = head.Payload()
proofs[i].Inclusion = true
}
}
// by default, proofs are non-inclusion proofs
return
}
// increment steps for all the proofs
for _, p := range proofs {
p.Steps++
}
// partition step to quick sort the paths:
// lpaths contains all paths that have `0` at the partitionIndex
// rpaths contains all paths that have `1` at the partitionIndex
depth := ledger.NodeMaxHeight - head.Height() // distance to the tree root
partitionIndex := splitTrieProofsByPath(paths, proofs, depth)
lpaths, rpaths := paths[:partitionIndex], paths[partitionIndex:]
lproofs, rproofs := proofs[:partitionIndex], proofs[partitionIndex:]
parallelRecursionThreshold := 64 // threshold to avoid the parallelization going too deep in the recursion
if len(lpaths) < parallelRecursionThreshold || len(rpaths) < parallelRecursionThreshold {
// runtime optimization: below the parallelRecursionThreshold, we proceed single-threaded
addSiblingTrieHashToProofs(head.RightChild(), depth, lproofs)
prove(head.LeftChild(), lpaths, lproofs)
addSiblingTrieHashToProofs(head.LeftChild(), depth, rproofs)
prove(head.RightChild(), rpaths, rproofs)
} else {
wg := sync.WaitGroup{}
wg.Add(1)
go func() {
addSiblingTrieHashToProofs(head.RightChild(), depth, lproofs)
prove(head.LeftChild(), lpaths, lproofs)
wg.Done()
}()
addSiblingTrieHashToProofs(head.LeftChild(), depth, rproofs)
prove(head.RightChild(), rpaths, rproofs)
wg.Wait()
}
}
// addSiblingTrieHashToProofs inspects the sibling Trie and adds its root hash
// to the proofs, if the trie contains non-empty registers (i.e. the
// siblingTrie has a non-default hash).
func addSiblingTrieHashToProofs(siblingTrie *node.Node, depth int, proofs []*ledger.TrieProof) {
if siblingTrie == nil || len(proofs) == 0 {
return
}
// This code is necessary, because we do not remove nodes from the trie
// when a register is deleted. Instead, we just set the respective leaf's
// payload to empty. While this will cause the lead's hash to become the
// default hash, the node itself remains as part of the trie.
// However, a proof has the convention that the hash of the sibling trie
// should only be included, if it is _non-default_. Therefore, we can
// neither use `siblingTrie == nil` nor `siblingTrie.RegisterCount == 0`,
// as the sibling trie might contain leaves with default value (which are
// still counted as occupied registers)
// TODO: On update, prune subtries which only contain empty registers.
// Then, a child is nil if and only if the subtrie is empty.
nodeHash := siblingTrie.Hash()
isDef := nodeHash == ledger.GetDefaultHashForHeight(siblingTrie.Height())
if !isDef { // in proofs, we only provide non-default value hashes
for _, p := range proofs {
bitutils.SetBit(p.Flags, depth)
p.Interims = append(p.Interims, nodeHash)
}
}
}
// Equals compares two tries for equality.
// Tries are equal iff they store the same data (i.e. root hash matches)
// and their number and height are identical
func (mt *MTrie) Equals(o *MTrie) bool {
if o == nil {
return false
}
return o.RootHash() == mt.RootHash()
}
// DumpAsJSON dumps the trie key value pairs to a file having each key value pair as a json row
func (mt *MTrie) DumpAsJSON(w io.Writer) error {
// Use encoder to prevent building entire trie in memory
enc := json.NewEncoder(w)
err := dumpAsJSON(mt.root, enc)
if err != nil {
return err
}
return nil
}
// dumpAsJSON serializes the sub-trie with root n to json and feeds it into encoder
func dumpAsJSON(n *node.Node, encoder *json.Encoder) error {
if n.IsLeaf() {
if n != nil {
err := encoder.Encode(n.Payload())
if err != nil {
return err
}
}
return nil
}
if lChild := n.LeftChild(); lChild != nil {
err := dumpAsJSON(lChild, encoder)
if err != nil {
return err
}
}
if rChild := n.RightChild(); rChild != nil {
err := dumpAsJSON(rChild, encoder)
if err != nil {
return err
}
}
return nil
}
// EmptyTrieRootHash returns the rootHash of an empty Trie for the specified path size [bytes]
func EmptyTrieRootHash() ledger.RootHash {
return ledger.RootHash(ledger.GetDefaultHashForHeight(ledger.NodeMaxHeight))
}
// AllPayloads returns all payloads
func (mt *MTrie) AllPayloads() []ledger.Payload {
return mt.root.AllPayloads()
}
// IsAValidTrie verifies the content of the trie for potential issues
func (mt *MTrie) IsAValidTrie() bool {
// TODO add checks on the health of node max height ...
return mt.root.VerifyCachedHash()
}
// splitByPath permutes the input paths to be partitioned into 2 parts. The first part contains paths with a zero bit
// at the input bitIndex, the second part contains paths with a one at the bitIndex. The index of partition
// is returned. The same permutation is applied to the payloads slice.
//
// This would be the partition step of an ascending quick sort of paths (lexicographic order)
// with the pivot being the path with all zeros and 1 at bitIndex.
// The comparison of paths is only based on the bit at bitIndex, the function therefore assumes all paths have
// equal bits from 0 to bitIndex-1
//
// For instance, if `paths` contains the following 3 paths, and bitIndex is `1`:
// [[0,0,1,1], [0,1,0,1], [0,0,0,1]]
// then `splitByPath` returns 2 and updates `paths` into:
// [[0,0,1,1], [0,0,0,1], [0,1,0,1]]
func splitByPath(paths []ledger.Path, payloads []ledger.Payload, bitIndex int) int {
i := 0
for j, path := range paths {
bit := bitutils.ReadBit(path[:], bitIndex)
if bit == 0 {
paths[i], paths[j] = paths[j], paths[i]
payloads[i], payloads[j] = payloads[j], payloads[i]
i++
}
}
return i
}
// SplitPaths permutes the input paths to be partitioned into 2 parts. The first part contains paths with a zero bit
// at the input bitIndex, the second part contains paths with a one at the bitIndex. The index of partition
// is returned.
//
// This would be the partition step of an ascending quick sort of paths (lexicographic order)
// with the pivot being the path with all zeros and 1 at bitIndex.
// The comparison of paths is only based on the bit at bitIndex, the function therefore assumes all paths have
// equal bits from 0 to bitIndex-1
func SplitPaths(paths []ledger.Path, bitIndex int) int {
i := 0
for j, path := range paths {
bit := bitutils.ReadBit(path[:], bitIndex)
if bit == 0 {
paths[i], paths[j] = paths[j], paths[i]
i++
}
}
return i
}
// splitTrieProofsByPath permutes the input paths to be partitioned into 2 parts. The first part contains paths
// with a zero bit at the input bitIndex, the second part contains paths with a one at the bitIndex. The index
// of partition is returned. The same permutation is applied to the proofs slice.
//
// This would be the partition step of an ascending quick sort of paths (lexicographic order)
// with the pivot being the path with all zeros and 1 at bitIndex.
// The comparison of paths is only based on the bit at bitIndex, the function therefore assumes all paths have
// equal bits from 0 to bitIndex-1
func splitTrieProofsByPath(paths []ledger.Path, proofs []*ledger.TrieProof, bitIndex int) int {
i := 0
for j, path := range paths {
bit := bitutils.ReadBit(path[:], bitIndex)
if bit == 0 {
paths[i], paths[j] = paths[j], paths[i]
proofs[i], proofs[j] = proofs[j], proofs[i]
i++
}
}
return i
}
func minInt(a, b int) int {
if a < b {
return a
}
return b
}