-
Notifications
You must be signed in to change notification settings - Fork 179
/
tree.go
555 lines (478 loc) · 17.6 KB
/
tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
package merkle
import (
"errors"
"fmt"
"golang.org/x/crypto/blake2b"
"github.com/onflow/flow-go/ledger/common/bitutils"
)
// maxKeyLength in bytes:
// For any key, we need to ensure that the entire path can be stored in a short node.
// A short node stores the _number of bits_ for the path segment it represents in 2 bytes.
//
// Hence, the theoretically possible value range is [0,65535]. However, a short node with
// zero path length is not part of our storage model. Furthermore, we always represent
// keys as _byte_ slices, i.e. their number of bits must be an integer-multiple of 8.
// Therefore, the range of valid key length in bytes is [1, 8191] (the corresponding
// range in bits is [8, 65528]) .
const maxKeyLength = 8191
const maxKeyLenBits = maxKeyLength * 8
var EmptyTreeRootHash []byte
func init() {
h, _ := blake2b.New256([]byte{})
EmptyTreeRootHash = h.Sum(nil)
}
// Tree represents a binary patricia merkle tree. The difference with a normal
// merkle tree is that it compresses paths that lead to a single leaf into a
// single intermediary node, which makes it significantly more space-efficient
// and a lot harder to exploit for denial-of-service attacks. On the downside,
// it makes insertions and deletions more complex, as we need to split nodes
// and merge them, depending on whether there are leaves or not.
//
// CONVENTION:
// - If the tree contains _any_ elements, the tree is defined by its root vertex.
// This case follows completely the convention for nodes: "In any existing tree,
// all nodes are non-nil."
// - Without any stored elements, there exists no root vertex in this data model,
// and we set `root` to nil.
type Tree struct {
keyLength int
root node
// setting this flag would prevent more writes to the trie
// but makes it more efficient for proof generation
readOnlyEnabled bool
}
// NewTree creates a new empty patricia merkle tree, with keys of the given
// `keyLength` (length measured in bytes).
// The current implementation only works with 1 ≤ keyLength ≤ 8191. Otherwise,
// the sentinel error `ErrorIncompatibleKeyLength` is returned.
func NewTree(keyLength int) (*Tree, error) {
if keyLength < 1 || maxKeyLength < keyLength {
return nil, fmt.Errorf("key length %d is outside of supported interval [1, %d]: %w", keyLength, maxKeyLength, ErrorIncompatibleKeyLength)
}
return &Tree{
keyLength: keyLength,
root: nil,
}, nil
}
// MakeItReadOnly makes the tree read only, this operation is not reversible.
// when tree becomes readonly, while doing operations it starts caching hashValues
// for faster operations.
func (t *Tree) MakeItReadOnly() {
t.readOnlyEnabled = true
}
// ComputeMaxDepth returns the maximum depth of the tree by traversing all paths
//
// Warning: this could be a very expensive operation for large trees, as nodes
// don't cache the depth of children and have to compute by traversing.
func (t *Tree) ComputeMaxDepth() uint {
return t.root.MaxDepthOfDescendants()
}
// Put stores the given value in the trie under the given key. If the key
// already exists, it will replace the value and return true. All inputs
// are internally stored and copied where necessary, thereby allowing
// external code to re-use the slices.
// Returns:
// - (false, nil): key-value pair is stored; key did _not_ yet exist prior to update
// - (true, nil): key-value pair is stored; key existed prior to update and the old
// value was overwritten
// - (false, error): with possible error returns
// - ErrorIncompatibleKeyLength if `key` has different length than the pre-configured value
// No other errors are returned.
func (t *Tree) Put(key []byte, val []byte) (bool, error) {
if t.readOnlyEnabled {
return false, errors.New("tree is in readonly mode, no more put operation is accepted")
}
if len(key) != t.keyLength {
return false, fmt.Errorf("trie is configured for key length of %d bytes, but got key with length %d: %w", t.keyLength, len(key), ErrorIncompatibleKeyLength)
}
replaced := t.unsafePut(key, val)
return replaced, nil
}
// unsafePut stores the given value in the trie under the given key. If the
// key already exists, it will replace the value and return true.
// UNSAFE:
// - all keys must have identical lengths, which is not checked here.
func (t *Tree) unsafePut(key []byte, val []byte) bool {
// the path through the tree is determined by the key; we decide whether to
// go left or right based on whether the next bit is set or not
// we use a pointer that points at the current node in the tree
cur := &t.root
// we use an index to keep track of the bit we are currently looking at
index := 0
// the for statement keeps running until we reach a leaf in the merkle tree
// if the leaf is nil, it was empty and we insert a new value
// if the leaf is a valid pointer, we overwrite the previous value
PutLoop:
for {
switch n := (*cur).(type) {
// if we have a full node, we have a node on each side to go to, so we
// just pick the next node based on whether the bit is set or not
case *full:
// if the bit is 0, we go left; otherwise (bit value 1), we go right
if bitutils.ReadBit(key, index) == 0 {
cur = &n.left
} else {
cur = &n.right
}
// we forward the index by one to look at the next bit
index++
continue PutLoop
// if we have a short node, we have a path of several bits to the next
// node; in that case, we use as much of the shared path as possible
case *short:
// first, we find out how many bits we have in common
commonCount := 0
for i := 0; i < n.count; i++ {
if bitutils.ReadBit(key, i+index) != bitutils.ReadBit(n.path, i) {
break
}
commonCount++
}
// if the common and node count are equal, we share all of the path
// we can simply forward to the child of the short node and continue
if commonCount == n.count {
cur = &n.child
index += commonCount
continue PutLoop
}
// if the common count is non-zero, we share some of the path;
// first, we insert a common short node for the shared path
if commonCount > 0 {
commonPath := bitutils.MakeBitVector(commonCount)
for i := 0; i < commonCount; i++ {
bitutils.WriteBit(commonPath, i, bitutils.ReadBit(key, i+index))
}
commonNode := &short{count: commonCount, path: commonPath}
*cur = commonNode
cur = &commonNode.child
index += commonCount
}
// we then insert a full node that splits the tree after the shared
// path; we set our pointer to the side that lies on our path,
// and use a remaining pointer for the other side of the node
var remain *node
splitNode := &full{}
*cur = splitNode
if bitutils.ReadBit(n.path, commonCount) == 1 {
cur = &splitNode.left
remain = &splitNode.right
} else {
cur = &splitNode.right
remain = &splitNode.left
}
index++
// we can continue our insertion at this point, but we should first
// insert the correct node on the other side of the created full
// node; if we have remaining path, we create a short node and
// forward to its path; finally, we set the leaf to original leaf
remainCount := n.count - commonCount - 1
if remainCount > 0 {
remainPath := bitutils.MakeBitVector(remainCount)
for i := 0; i < remainCount; i++ {
bitutils.WriteBit(remainPath, i, bitutils.ReadBit(n.path, i+commonCount+1))
}
remainNode := &short{count: remainCount, path: remainPath}
*remain = remainNode
remain = &remainNode.child
}
*remain = n.child
continue PutLoop
// if we have a leaf node, we reached a non-empty leaf
case *leaf:
n.val = append(make([]byte, 0, len(val)), val...)
return true // return true to indicate that we overwrote
// if we have nil, we reached the end of any shared path
case nil:
// if we have reached the end of the key, insert the new value
totalCount := len(key) * 8
if index == totalCount {
// Instantiate a new leaf holding a _copy_ of the provided key-value pair,
// to protect the slices from external modification.
*cur = &leaf{
val: append(make([]byte, 0, len(val)), val...),
}
return false
}
// otherwise, insert a short node with the remainder of the path
finalCount := totalCount - index
finalPath := bitutils.MakeBitVector(finalCount)
for i := 0; i < finalCount; i++ {
bitutils.WriteBit(finalPath, i, bitutils.ReadBit(key, index+i))
}
finalNode := &short{count: finalCount, path: []byte(finalPath)}
*cur = finalNode
cur = &finalNode.child
index += finalCount
continue PutLoop
}
}
}
// Get will retrieve the value associated with the given key. It returns true
// if the key was found and false otherwise.
func (t *Tree) Get(key []byte) ([]byte, bool) {
if t.keyLength != len(key) {
return nil, false
}
return t.unsafeGet(key)
}
// unsafeGet retrieves the value associated with the given key. It returns true
// if the key was found and false otherwise.
// UNSAFE:
// - all keys must have identical lengths, which is not checked here.
func (t *Tree) unsafeGet(key []byte) ([]byte, bool) {
cur := &t.root // start at the root
index := 0 // and we start at a zero index in the path
GetLoop:
for {
switch n := (*cur).(type) {
// if we have a full node, we can follow the path for at least one more
// bit, so go left or right depending on whether it's set or not
case *full:
// forward pointer and index to the correct child
if bitutils.ReadBit(key, index) == 0 {
cur = &n.left
} else {
cur = &n.right
}
index++
continue GetLoop
// if we have a short path, we can only follow the short node if
// its paths has all bits in common with the key we are retrieving
case *short:
// if any part of the path doesn't match, key doesn't exist
for i := 0; i < n.count; i++ {
if bitutils.ReadBit(key, i+index) != bitutils.ReadBit(n.path, i) {
return nil, false
}
}
// forward pointer and index to child
cur = &n.child
index += n.count
continue GetLoop
// if we have a leaf, we found the key, return value and true
case *leaf:
return n.val, true
// if we have a nil node, key doesn't exist, return nil and false
case nil:
return nil, false
}
}
}
// Prove constructs an inclusion proof for the given key, provided the key exists in the trie.
// It returns:
// - (proof, true) if key is found
// - (nil, false) if key is not found
// Proof is constructed by traversing the trie from top to down and collects data for proof as follows:
// - if full node, append the sibling node hash value to sibling hash list
// - if short node, appends the node.shortCount to the short count list
// - if leaf, would capture the leaf value
func (t *Tree) Prove(key []byte) (*Proof, bool) {
// check the len of key first
if t.keyLength != len(key) {
return nil, false
}
// we start at the root again
cur := &t.root
// and we start at a zero index in the path
index := 0
// init proof params
siblingHashes := make([][]byte, 0)
shortPathLengths := make([]uint16, 0)
steps := 0
shortNodeVisited := make([]bool, 0)
ProveLoop:
for {
switch n := (*cur).(type) {
// if we have a full node, we can follow the path for at least one more
// bit, so go left or right depending on whether it's set or not
case *full:
var sibling node
// forward pointer and index to the correct child
if bitutils.ReadBit(key, index) == 0 {
sibling = n.right
cur = &n.left
} else {
sibling = n.left
cur = &n.right
}
index++
siblingHashes = append(siblingHashes, sibling.Hash(t.readOnlyEnabled))
shortNodeVisited = append(shortNodeVisited, false)
steps++
continue ProveLoop
// if we have a short node, we can only follow the path if the key's subsequent
// bits match the entire path segment of the short node.
case *short:
// if any part of the path doesn't match, key doesn't exist
for i := 0; i < n.count; i++ {
if bitutils.ReadBit(key, i+index) != bitutils.ReadBit(n.path, i) {
return nil, false
}
}
cur = &n.child
index += n.count
shortPathLengths = append(shortPathLengths, uint16(n.count))
shortNodeVisited = append(shortNodeVisited, true)
steps++
continue ProveLoop
// if we have a leaf, we found the key, return proof and true
case *leaf:
// compress interimNodeTypes
interimNodeTypes := bitutils.MakeBitVector(len(shortNodeVisited))
for i, b := range shortNodeVisited {
if b {
bitutils.SetBit(interimNodeTypes, i)
}
}
return &Proof{
Key: key,
Value: n.val,
InterimNodeTypes: interimNodeTypes,
ShortPathLengths: shortPathLengths,
SiblingHashes: siblingHashes,
}, true
// the only possible nil node is the root node of an empty trie
case nil:
return nil, false
}
}
}
// Del removes the value associated with the given key from the patricia
// merkle trie. It returns true if they key was found and false otherwise.
// Internally, any parent nodes between the leaf up to the closest shared path
// will be deleted or merged, which keeps the trie deterministic regardless of
// insertion and deletion orders.
func (t *Tree) Del(key []byte) (bool, error) {
if t.readOnlyEnabled {
return false, errors.New("tree is in readonly mode, no more delete operation is accepted")
}
if t.keyLength != len(key) {
return false, fmt.Errorf("trie is configured for key length of %d bytes, but got key with length %d: %w", t.keyLength, len(key), ErrorIncompatibleKeyLength)
}
return t.unsafeDel(key), nil
}
// unsafeDel removes the value associated with the given key from the patricia
// merkle trie. It returns true if they key was found and false otherwise.
// Internally, any parent nodes between the leaf up to the closest shared path
// will be deleted or merged, which keeps the trie deterministic regardless of
// insertion and deletion orders.
// UNSAFE:
// - all keys must have identical lengths, which is not checked here.
func (t *Tree) unsafeDel(key []byte) bool {
cur := &t.root // start at the root
index := 0 // the index points to the bit we are processing in the path
// we initialize three pointers pointing to a dummy empty node
// this is used to keep track of the node we last pointed to, as well as
// its parent and grand parent, which is needed in case we remove a full
// node and have to merge several other nodes into a short node; otherwise,
// we would not keep the tree as compact as possible, and it would no longer
// be deterministic after deletes
dummy := node(&dummy{})
last, parent, grand := &dummy, &dummy, &dummy
DelLoop:
for {
switch n := (*cur).(type) {
// if we have a full node, we forward all of the pointers
case *full:
// keep track of grand-parent, parent and node for cleanup
grand = parent
parent = last
last = cur
// forward pointer and index to the correct child
if bitutils.ReadBit(key, index) == 0 {
cur = &n.left
} else {
cur = &n.right
}
index++
continue DelLoop
// if we have a short node, we forward by all of the common path if
// possible; otherwise the node wasn't found
case *short:
// keep track of grand-parent, parent and node for cleanup
grand = parent
parent = last
last = cur
// if the path doesn't match at any point, we can't find the node
for i := 0; i < n.count; i++ {
if bitutils.ReadBit(key, i+index) != bitutils.ReadBit(n.path, i) {
return false
}
}
// forward pointer and index to the node child
cur = &n.child
index += n.count
continue DelLoop
// if we have a leaf node, we remove it and continue with cleanup
case *leaf:
*cur = nil // replace the current pointer with nil to delete the node
break DelLoop
// if we reach nil, the node doesn't exist
case nil:
return false
}
}
// if the last node before reaching the leaf is a short node, we set it to
// nil to remove it from the tree and move the pointer to its parent
_, ok := (*last).(*short)
if ok {
*last = nil
last = parent
parent = grand
}
// if the last node here is not a full node, we are done; we never have two
// short nodes in a row, which means we have reached the root
f, ok := (*last).(*full)
if !ok {
return true
}
// if the last node is a full node, we need to convert it into a short node
// that holds the undeleted child and the corresponding bit as path
var n *short
newPath := bitutils.MakeBitVector(1)
if f.left != nil {
bitutils.ClearBit(newPath, 0)
n = &short{count: 1, path: newPath, child: f.left}
} else {
bitutils.SetBit(newPath, 0)
n = &short{count: 1, path: newPath, child: f.right}
}
*last = n
// if the child is also a short node, we have to merge them and use the
// child's child as the child of the merged short node
c, ok := n.child.(*short)
if ok {
merge(n, c)
}
// if the parent is also a short node, we have to merge them and use the
// current child as the child of the merged node
p, ok := (*parent).(*short)
if ok {
merge(p, n)
}
// NOTE: if neither the parent nor the child are short nodes, we simply
// bypass both conditional scopes and land here right away
return true
}
// Hash returns the root hash of this patricia merkle tree.
// Per convention, an empty trie has an empty hash.
func (t *Tree) Hash() []byte {
if t.root == nil {
return EmptyTreeRootHash
}
return t.root.Hash(t.readOnlyEnabled)
}
// merge will merge a child short node into a parent short node.
func merge(p *short, c *short) {
totalCount := p.count + c.count
totalPath := bitutils.MakeBitVector(totalCount)
for i := 0; i < p.count; i++ {
bitutils.WriteBit(totalPath, i, bitutils.ReadBit(p.path, i))
}
for i := 0; i < c.count; i++ {
bitutils.WriteBit(totalPath, i+p.count, bitutils.ReadBit(c.path, i))
}
p.count = totalCount
p.path = totalPath
p.child = c.child
}