You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
I have searching for this problem two days plz give me some help !
I want using my own dataset to finetune a pretrain model and I have change it to COCO dataset
following is my config
Config:
auto_scale_lr = dict(base_batch_size=64, enable=True)
backend_args = dict(backend='local')
codec = dict(
heatmap_size=(
48,
64,
),
input_size=(
192,
256,
),
sigma=2,
type='UDPHeatmap')
custom_hooks = [
dict(type='SyncBuffersHook'),
]
custom_imports = dict(
allow_failed_imports=False,
imports=[
'mmpose.engine.optim_wrappers.layer_decay_optim_wrapper',
])
data_mode = 'topdown'
data_root = 'data/coco/'
dataset_info = dict(
data_root='/data1/data/vscode-ml/pose detect/確認使用',
dataset_name='pelvictiltDataset',
joint_weights=[
1.5,
1.2,
1.0,
1.0,
1.2,
1.5,
1.3,
],
keypoint_info=dict({
0:
dict(color=[
255,
128,
0,
], id=0, name='head', swap='', type='upper'),
1:
dict(color=[
255,
128,
0,
], id=1, name='ear', swap='', type='upper'),
2:
dict(
color=[
255,
128,
0,
],
id=2,
name='shoulder',
swap='',
type='upper'),
3:
dict(
color=[
0,
255,
0,
], id=3, name='psis', swap='psis', type='lower'),
4:
dict(
color=[
0,
255,
0,
], id=4, name='asis', swap='asis', type='lower'),
5:
dict(color=[
0,
255,
0,
], id=5, name='knee', swap='', type='lower'),
6:
dict(
color=[
0,
0,
255,
],
id=6,
name='midpoint_psis_asis',
swap='',
type='lower')
}),
paper_info=dict(author='max'),
sigmas=[
0.089,
0.087,
0.107,
0.107,
0.087,
0.089,
0.095,
],
skeleton_info=dict({
0:
dict(color=[
255,
128,
0,
], id=0, link=(
'head',
'ear',
)),
1:
dict(color=[
255,
128,
0,
], id=1, link=(
'head',
'shoulder',
)),
2:
dict(color=[
0,
255,
0,
], id=2, link=(
'shoulder',
'psis',
)),
3:
dict(color=[
0,
255,
0,
], id=3, link=(
'psis',
'asis',
)),
4:
dict(color=[
0,
255,
0,
], id=4, link=(
'asis',
'knee',
)),
5:
dict(color=[
0,
0,
255,
], id=5, link=(
'psis',
'midpoint_psis_asis',
)),
6:
dict(color=[
0,
0,
255,
], id=6, link=(
'asis',
'midpoint_psis_asis',
))
}))
dataset_type = 'CocoDataset'
default_hooks = dict(
checkpoint=dict(
interval=10,
max_keep_ckpts=1,
rule='greater',
save_best='coco/AP',
type='CheckpointHook'),
logger=dict(interval=50, type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
timer=dict(type='IterTimerHook'),
visualization=dict(enable=False, type='PoseVisualizationHook'))
default_scope = 'mmpose'
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
load_from = None
log_level = 'INFO'
log_processor = dict(
by_epoch=True, num_digits=6, type='LogProcessor', window_size=50)
model = dict(
backbone=dict(
arch='huge',
drop_path_rate=0.55,
frozen_stages=2,
img_size=(
256,
192,
),
init_cfg=dict(
checkpoint=
'https://download.openmmlab.com/mmpose/v1/pretrained_models/mae_pretrain_vit_huge.pth',
prefix='backbone',
type='Pretrained'),
out_type='featmap',
patch_cfg=dict(padding=2),
patch_size=16,
qkv_bias=True,
type='mmpretrain.VisionTransformer',
with_cls_token=False),
data_preprocessor=dict(
bgr_to_rgb=True,
mean=[
123.675,
116.28,
103.53,
],
std=[
58.395,
57.12,
57.375,
],
type='PoseDataPreprocessor'),
head=dict(
decoder=dict(
heatmap_size=(
48,
64,
),
input_size=(
192,
256,
),
sigma=2,
type='UDPHeatmap'),
deconv_kernel_sizes=(
4,
4,
),
deconv_out_channels=(
256,
256,
),
in_channels=1280,
loss=dict(type='KeypointMSELoss', use_target_weight=True),
out_channels=7,
type='HeatmapHead'),
test_cfg=dict(flip_mode='heatmap', flip_test=True, shift_heatmap=False),
type='TopdownPoseEstimator')
optim_wrapper = dict(
clip_grad=dict(max_norm=1.0, norm_type=2),
constructor='LayerDecayOptimWrapperConstructor',
optimizer=dict(
betas=(
0.9,
0.999,
), lr=0.0005, type='AdamW', weight_decay=0.1),
paramwise_cfg=dict(
custom_keys=dict(
bias=dict(decay_multi=0.0),
norm=dict(decay_mult=0.0),
pos_embed=dict(decay_mult=0.0),
relative_position_bias_table=dict(decay_mult=0.0)),
layer_decay_rate=0.85,
num_layers=32))
param_scheduler = [
dict(
begin=0, by_epoch=False, end=500, start_factor=0.001, type='LinearLR'),
dict(
begin=0,
by_epoch=True,
end=210,
gamma=0.1,
milestones=[
170,
200,
],
type='MultiStepLR'),
]
resume = False
test_cfg = dict()
test_dataloader = dict(
batch_size=8,
dataset=dict(
ann_file='/data1/data/vscode-ml/pose detect/test_output.json',
bbox_file='/data1/data/vscode-ml/pose detect/bbox_output.json',
data_mode='topdown',
data_prefix=dict(
img='/data1/data/vscode-ml/pose detect/確認使用/test_images'),
data_root='/data1/data/vscode-ml/pose detect/確認使用',
metainfo=dict(
from_file=
'/data1/data/vscode-ml/pose detect/mmpose/configs/base/datasets/pelvictilt-custom.py'
),
pipeline=[
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(input_size=(
192,
256,
), type='TopdownAffine', use_udp=True),
dict(type='PackPoseInputs'),
],
test_mode=True,
type='CocoDataset'),
drop_last=False,
num_workers=4,
persistent_workers=True,
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler'))
test_evaluator = dict(
ann_file='/data1/data/vscode-ml/pose detect/test_output.json',
type='CocoMetric')
train_cfg = dict(by_epoch=True, max_epochs=210, val_interval=10)
train_dataloader = dict(
batch_size=16,
dataset=dict(
ann_file='/data1/data/vscode-ml/pose detect/train_output.json',
data_mode='topdown',
data_prefix=dict(
img='/data1/data/vscode-ml/pose detect/確認使用/train_images'),
data_root='/data1/data/vscode-ml/pose detect/確認使用/',
metainfo=dict(
from_file=
'/data1/data/vscode-ml/pose detect/mmpose/configs/base/datasets/pelvictilt-custom.py'
),
pipeline=[
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(direction='horizontal', type='RandomFlip'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(input_size=(
192,
256,
), type='TopdownAffine', use_udp=True),
dict(
encoder=dict(
heatmap_size=(
48,
64,
),
input_size=(
192,
256,
),
sigma=2,
type='UDPHeatmap'),
type='GenerateTarget'),
dict(type='PackPoseInputs'),
],
type='CocoDataset'),
num_workers=4,
persistent_workers=True,
sampler=dict(shuffle=True, type='DefaultSampler'))
train_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(direction='horizontal', type='RandomFlip'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(input_size=(
192,
256,
), type='TopdownAffine', use_udp=True),
dict(
encoder=dict(
heatmap_size=(
48,
64,
),
input_size=(
192,
256,
),
sigma=2,
type='UDPHeatmap'),
type='GenerateTarget'),
dict(type='PackPoseInputs'),
]
val_cfg = dict()
val_dataloader = dict(
batch_size=8,
dataset=dict(
ann_file='/data1/data/vscode-ml/pose detect/val_output.json',
bbox_file='/data1/data/vscode-ml/pose detect/bbox_output.json',
data_mode='topdown',
data_prefix=dict(
img='/data1/data/vscode-ml/pose detect/確認使用/val_images'),
data_root='/data1/data/vscode-ml/pose detect/確認使用',
metainfo=dict(
from_file=
'/data1/data/vscode-ml/pose detect/mmpose/configs/base/datasets/pelvictilt-custom.py'
),
pipeline=[
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(input_size=(
192,
256,
), type='TopdownAffine', use_udp=True),
dict(type='PackPoseInputs'),
],
test_mode=True,
type='CocoDataset'),
drop_last=False,
num_workers=4,
persistent_workers=True,
sampler=dict(round_up=False, shuffle=False, type='DefaultSampler'))
val_evaluator = dict(
ann_file='/data1/data/vscode-ml/pose detect/val_output.json',
type='CocoMetric')
val_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(input_size=(
192,
256,
), type='TopdownAffine', use_udp=True),
dict(type='PackPoseInputs'),
]
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
name='visualizer',
type='PoseLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
])
am I do anything wrong on this config?
Beta Was this translation helpful? Give feedback.
All reactions