We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The following IR fails to generate mfma instructions due to dynamic dimensions introduced in TileAndDistribute:
#executable_target = #hal.executable.target<"rocm", "rocm-hsaco-fb", {mma_intrinsics = [#iree_gpu.mma_layout<MFMA_F16_16x16x16_F32>, #iree_gpu.mma_layout<MFMA_F16_32x32x8_F32>], target_arch = "gfx942", ukernels = "none"}> module { func.func @fit_shared_memory_schedule_matmul() attributes {hal.executable.target = #executable_target} { %cst = arith.constant 0.000000e+00 : f32 %c129181184 = arith.constant 129181184 : index %c18112 = arith.constant 18112 : index %c100980224 = arith.constant 100980224 : index %0 = hal.interface.binding.subspan set(0) binding(0) type(storage_buffer) alignment(64) offset(%c129181184) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<80x1280xf16>> %1 = hal.interface.binding.subspan set(0) binding(1) type(storage_buffer) alignment(64) offset(%c18112) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<1280x1280xf16>> %2 = hal.interface.binding.subspan set(0) binding(2) type(storage_buffer) alignment(64) offset(%c100980224) : !flow.dispatch.tensor<writeonly:tensor<80x1280xf32>> %3 = flow.dispatch.tensor.load %0, offsets = [0, 0], sizes = [80, 1280], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<80x1280xf16>> -> tensor<80x1280xf16> %4 = flow.dispatch.tensor.load %1, offsets = [0, 0], sizes = [1280, 1280], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<1280x1280xf16>> -> tensor<1280x1280xf16> %5 = tensor.empty() : tensor<80x1280xf32> %6 = linalg.fill ins(%cst : f32) outs(%5 : tensor<80x1280xf32>) -> tensor<80x1280xf32> %7 = linalg.matmul ins(%3, %4 : tensor<80x1280xf16>, tensor<1280x1280xf16>) outs(%6 : tensor<80x1280xf32>) -> tensor<80x1280xf32> flow.dispatch.tensor.store %7, %2, offsets = [0, 0], sizes = [80, 1280], strides = [1, 1] : tensor<80x1280xf32> -> !flow.dispatch.tensor<writeonly:tensor<80x1280xf32>> return } }
Run:
iree-opt --split-input-file --iree-codegen-llvmgpu-use-vector-distribution --pass-pipeline='builtin.module(iree-llvmgpu-select-lowering-strategy, func.func(iree-llvmgpu-lower-executable-target, canonicalize))'
After TileAndDistributeToWorkgroups:
// -----// IR Dump After TileAndDistributeToWorkgroups (iree-codegen-tile-and-distribute-to-workgroups) //----- // func.func @fit_shared_memory_schedule_matmul() attributes {hal.executable.target = #hal.executable.target<"rocm", "rocm-hsaco-fb", {mma_intrinsics = [#iree_gpu.mma_layout<MFMA_F16_16x16x16_F32>, #iree_gpu.mma_layout<MFMA_F16_32x32x8_F32>], target_arch = "gfx942", ukernels = "none"}>, translation_info = #iree_codegen.translation_info<LLVMGPUVectorDistribute workgroup_size = [256, 1, 1] subgroup_size = 64, {mma_schedule = #iree_gpu.mma_schedule<intrinsic = #iree_gpu.mma_layout<MFMA_F16_16x16x16_F32>, subgroup_m_count = 1, subgroup_n_count = 4>}>} { %cst = arith.constant 0.000000e+00 : f32 %c129181184 = arith.constant 129181184 : index %c18112 = arith.constant 18112 : index %c100980224 = arith.constant 100980224 : index %0 = hal.interface.binding.subspan set(0) binding(0) type(storage_buffer) alignment(64) offset(%c129181184) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<80x1280xf16>> %1 = hal.interface.binding.subspan set(0) binding(1) type(storage_buffer) alignment(64) offset(%c18112) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<1280x1280xf16>> %2 = hal.interface.binding.subspan set(0) binding(2) type(storage_buffer) alignment(64) offset(%c100980224) : !flow.dispatch.tensor<writeonly:tensor<80x1280xf32>> %workgroup_id_x = hal.interface.workgroup.id[0] : index %workgroup_id_y = hal.interface.workgroup.id[1] : index %3 = affine.min affine_map<()[s0] -> (s0 * -16 + 80, 16)>()[%workgroup_id_y] %4 = affine.min affine_map<()[s0] -> (s0 * -128 + 1280, 128)>()[%workgroup_id_x] %5 = affine.apply affine_map<()[s0] -> (s0 * 16)>()[%workgroup_id_y] %6 = flow.dispatch.tensor.load %0, offsets = [%5, 0], sizes = [%3, 1280], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<80x1280xf16>> -> tensor<?x1280xf16> %7 = affine.apply affine_map<()[s0] -> (s0 * 128)>()[%workgroup_id_x] %8 = flow.dispatch.tensor.load %1, offsets = [0, %7], sizes = [1280, %4], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<1280x1280xf16>> -> tensor<1280x?xf16> %9 = tensor.empty(%3, %4) : tensor<?x?xf32> %10 = linalg.fill {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[16, 128, 128]]>} ins(%cst : f32) outs(%9 : tensor<?x?xf32>) -> tensor<?x?xf32> %11 = linalg.matmul {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[16, 128, 128]]>} ins(%6, %8 : tensor<?x1280xf16>, tensor<1280x?xf16>) outs(%10 : tensor<?x?xf32>) -> tensor<?x?xf32> %12 = affine.apply affine_map<()[s0] -> (s0 * 16)>()[%workgroup_id_y] %13 = affine.apply affine_map<()[s0] -> (s0 * 128)>()[%workgroup_id_x] flow.dispatch.tensor.store %11, %2, offsets = [%12, %13], sizes = [%3, %4], strides = [1, 1] : tensor<?x?xf32> -> !flow.dispatch.tensor<writeonly:tensor<80x1280xf32>> return }
The M tile size becomes dynamic due to an affine_min, even though the tile should be known static at compile time:
M
%3 = affine.min affine_map<()[s0] -> (s0 * -16 + 80, 16)>()[%workgroup_id_y]
Later, this fails to vectorize in GenericVectorization (I assume because of the dynamic dim), and results in no mfma ops later on:
// -----// IR Dump After GenericVectorization (iree-codegen-generic-vectorization) //----- // func.func @fit_shared_memory_schedule_matmul() attributes {hal.executable.target = #hal.executable.target<"rocm", "rocm-hsaco-fb", {mma_intrinsics = [#iree_gpu.mma_layout<MFMA_F16_16x16x16_F32>, #iree_gpu.mma_layout<MFMA_F16_32x32x8_F32>], target_arch = "gfx942", ukernels = "none"}>, translation_info = #iree_codegen.translation_info<LLVMGPUVectorDistribute workgroup_size = [256, 1, 1] subgroup_size = 64, {mma_schedule = #iree_gpu.mma_schedule<intrinsic = #iree_gpu.mma_layout<MFMA_F16_16x16x16_F32>, subgroup_m_count = 1, subgroup_n_count = 4>}>} { %c128 = arith.constant 128 : index %c1280 = arith.constant 1280 : index %c0 = arith.constant 0 : index %cst = arith.constant 0.000000e+00 : f32 %c129181184 = arith.constant 129181184 : index %c18112 = arith.constant 18112 : index %c100980224 = arith.constant 100980224 : index %0 = hal.interface.binding.subspan set(0) binding(0) type(storage_buffer) alignment(64) offset(%c129181184) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<80x1280xf16>> %1 = hal.interface.binding.subspan set(0) binding(1) type(storage_buffer) alignment(64) offset(%c18112) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<1280x1280xf16>> %2 = hal.interface.binding.subspan set(0) binding(2) type(storage_buffer) alignment(64) offset(%c100980224) : !flow.dispatch.tensor<writeonly:tensor<80x1280xf32>> %workgroup_id_y = hal.interface.workgroup.id[1] : index %3 = affine.apply affine_map<()[s0] -> (s0 * 16)>()[%workgroup_id_y] %workgroup_id_x = hal.interface.workgroup.id[0] : index %4 = affine.apply affine_map<()[s0] -> (s0 * 128)>()[%workgroup_id_x] %5 = affine.min affine_map<()[s0] -> (s0 * -16 + 80, 16)>()[%workgroup_id_y] %6 = affine.min affine_map<()[s0] -> (s0 * -128 + 1280, 128)>()[%workgroup_id_x] %7 = flow.dispatch.tensor.load %2, offsets = [%3, %4], sizes = [%5, %6], strides = [1, 1] : !flow.dispatch.tensor<writeonly:tensor<80x1280xf32>> -> tensor<?x?xf32> %8 = flow.dispatch.tensor.load %0, offsets = [%3, 0], sizes = [%5, 1280], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<80x1280xf16>> -> tensor<?x1280xf16> %9 = flow.dispatch.tensor.load %1, offsets = [0, %4], sizes = [1280, %6], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<1280x1280xf16>> -> tensor<1280x?xf16> %10 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> ()>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%cst : f32) outs(%7 : tensor<?x?xf32>) { ^bb0(%in: f32, %out: f32): linalg.yield %in : f32 } -> tensor<?x?xf32> %extracted_slice = tensor.extract_slice %10[0, 0] [%5, %6] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32> %11 = scf.for %arg0 = %c0 to %c1280 step %c128 iter_args(%arg1 = %extracted_slice) -> (tensor<?x?xf32>) { %extracted_slice_0 = tensor.extract_slice %8[0, %arg0] [%5, 128] [1, 1] : tensor<?x1280xf16> to tensor<?x128xf16> %extracted_slice_1 = tensor.extract_slice %9[%arg0, 0] [128, %6] [1, 1] : tensor<1280x?xf16> to tensor<128x?xf16> %12 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>], iterator_types = ["parallel", "parallel", "reduction"]} ins(%extracted_slice_0, %extracted_slice_1 : tensor<?x128xf16>, tensor<128x?xf16>) outs(%arg1 : tensor<?x?xf32>) { ^bb0(%in: f16, %in_2: f16, %out: f32): %13 = arith.extf %in : f16 to f32 %14 = arith.extf %in_2 : f16 to f32 %15 = arith.mulf %13, %14 : f32 %16 = arith.addf %out, %15 : f32 linalg.yield %16 : f32 } -> tensor<?x?xf32> scf.yield %12 : tensor<?x?xf32> } %inserted_slice = tensor.insert_slice %11 into %10[0, 0] [%5, %6] [1, 1] : tensor<?x?xf32> into tensor<?x?xf32> flow.dispatch.tensor.store %inserted_slice, %2, offsets = [%3, %4], sizes = [%5, %6], strides = [1, 1] : tensor<?x?xf32> -> !flow.dispatch.tensor<writeonly:tensor<80x1280xf32>> return }
The text was updated successfully, but these errors were encountered:
There seems to actually be no bug here. The test is just broken, as it needs a hal.executable.variant for the number of workgroups to be inferred.
hal.executable.variant
Sorry, something went wrong.
No branches or pull requests
The following IR fails to generate mfma instructions due to dynamic dimensions introduced in TileAndDistribute:
Run:
After TileAndDistributeToWorkgroups:
The
M
tile size becomes dynamic due to an affine_min, even though the tile should be known static at compile time:Later, this fails to vectorize in GenericVectorization (I assume because of the dynamic dim), and results in no mfma ops later on:
The text was updated successfully, but these errors were encountered: